Nastya Studies Informatics
1 second
256 megabytes
standard input
standard output
Today on Informatics class Nastya learned about GCD and LCM (see links below). Nastya is very intelligent, so she solved all the tasks momentarily and now suggests you to solve one of them as well.
We define a pair of integers (a,b)good, if GCD(a,b)=x and LCM(a,b)=y, where GCD(a,b)denotes the greatest common divisor of a and b, and LCM(a,b)denotes the least common multiple of a and b.
You are given two integers x and y. You are to find the number of good pairs of integers (a,b) such that l≤a,b≤r. Note that pairs (a,b) and (b,a) are considered different if a≠b.
The only line contains four integers l,r,x,y (1≤l≤r≤109, 1≤x≤y≤109).
In the only line print the only integer — the answer for the problem.
1 2 1 2
2
1 12 1 12
4
50 100 3 30
0
In the first example there are two suitable good pairs of integers (a,b): (1,2) and (2,1).
In the second example there are four suitable good pairs of integers (a,b): (1,12), (12,1),(3,4) and(4,3).
In the third example there are good pairs of integers, for example, (3,30), but none of them fits the condition l≤a,b≤rl≤a,b≤r.
题意就是给你一个范围(l,r),让你找有多少个数对(a,b)满足a和b的最大公约数是x,最小公倍数是y
思路就是对x,y进行质因数分解,这样对于每一个质因数,就会有一个上界和一个下界,而a,b对应的质因数取值也只能取上界或者下界
这样就可以把所有满足条件的数对都找出来,然后再一个个的判断是否在(l,r)范围里。
很显然数对的个数不会超过2的二十次方左右,所以不会超时。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<climits>
#include<functional>
#include<queue>
#include<vector>
#include<algorithm>
#define N 1000005
using namespace std; long long prime[N+],len=,pd[N+]= {}; void shushu()
{
pd[]=pd[]=; for(int i=; i<=N; i++)
{
if(pd[i]==)
{
prime[len++]=i;
} for(int j=; j<len; j++)
{
if(i*prime[j]>=N)
break;
pd[i*prime[j]]=;
if(i%prime[j]==)
break;
}
}
} long long l,r,x,y,team[],team1[]= {},team2[]= {},c1=,ans=; long long ff(long long a,long long b);
void f(long long x,long long a,long long b)
{ if(x==c1)
{
if(a>=l&&a<=r&&b>=l&&b<=r)
{
ans++; } return;
}
f(x+,a,b); if(team1[x]!=team2[x])
f(x+,a/ff(team[x],team1[x])*ff(team[x],team2[x]),b/ff(team[x],team2[x])*ff(team[x],team1[x])); } long long ff(long long a,long long b)
{
long long ans=; while(b>)
{
if(b%==)
{
ans*=a; } a*=a;
b/=; }
return ans;
} int main()
{
shushu(); scanf("%I64d %I64d %I64d %I64d",&l,&r,&x,&y); if(y%x!=)
{
printf("");
return ;
} for(int i=; i<len; i++)
{
if(y%prime[i]==)
team[c1++]=prime[i]; while(y%prime[i]==)
{
team2[c1-]++;
y/=prime[i]; } } if(y>)
{
team[c1++]=y;
team2[c1-]++;
} for(int i=; i<c1; i++)
{
while(x%team[i]==)
{
team1[i]++;
x/=team[i];
}
} long long a=,b=; for(int i=; i<c1; i++)
a*=ff(team[i],team1[i]);
for(int i=; i<c1; i++)
b*=ff(team[i],team2[i]); f(,a,b);
printf("%I64d",ans);
return ;
}
Nastya Studies Informatics的更多相关文章
- Nastya Studies Informatics CodeForces - 992B (大整数)
B. Nastya Studies Informatics time limit per test 1 second memory limit per test 256 megabytes input ...
- CF992B Nastya Studies Informatics 数学(因子) 暴力求解 第三道
Nastya Studies Informatics time limit per test 1 second memory limit per test 256 megabytes input st ...
- Nastya Studies Informatics CodeForces - 992B(增长姿势)
有增长姿势了 如果a * b == lcm * gcd 那么a和b为lcm因数 这个我之前真不知道emm... #include <bits/stdc++.h> #define mem( ...
- 【Codeforces 992B】Nastya Studies Informatics
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 因为gcd(a,b)=x 所以设a = nx b = mx 又有ab/gcd(a,b)=lcm(a,b)=y 则nmx = y 即n(m*x) ...
- CodeForces 992B Nastya Studies Informatics + Hankson的趣味题(gcd、lcm)
http://codeforces.com/problemset/problem/992/B 题意: 给你区间[l,r]和x,y 问你区间中有多少个数对 (a,b) 使得 gcd(a,b)=x lc ...
- Codeforces Round #489 (Div. 2)
A. Nastya and an Array time limit per test 1 second memory limit per test 256 megabytes input standa ...
- Codeforces Round #489 (Div. 2) B、C
B. Nastya Studies Informatics time limit per test 1 second memory limit per test 256 megabytes input ...
- [Codeforces]Codeforces Round #489 (Div. 2)
Nastya and an Array 输出有几种不同的数字 #pragma comment(linker, "/STACK:102400000,102400000") #ifnd ...
- Codeforces Round #546 (Div. 2) C. Nastya Is Transposing Matrices
C. Nastya Is Transposing Matrices time limit per test 1 second memory limit per test 256 megabytes i ...
随机推荐
- 洛谷 P2347 砝码称重 != codevs 2144
题目描述 设有1g.2g.3g.5g.10g.20g的砝码各若干枚(其总重<=1000), 输入输出格式 输入格式: 输入方式:a1 a2 a3 a4 a5 a6 (表示1g砝码有a1个,2g砝 ...
- 几个不错的APP网站。
http://www.yunshipei.com/yunshipei.html http://www.appcan.cn/
- redis分布式共享锁模拟抢单的实现
本篇内容主要讲解的是redis分布式锁,并结合模拟抢单的场景来使用,内容节点如下: jedis的nx生成锁 如何删除锁 模拟抢单动作 1.jedis的nx生成锁 对于分布式锁的生成通常需要注意如下几个 ...
- 手把手教你打造一个 Mac 风格的 Windows10(手动滑稽)
Mark https://www.sqlsec.com/2018/04/winmac.html 大佬写得很好,资瓷!! MyDock可能不是最新的,给出官方维护的网盘:https://pan.bai ...
- 安装pycharm 2018.3 Professional Edition
1.下载pycharm 2018.3 Professional 2.下载破解补丁,Gitee仓库 或 直接下载(Direct download link) ,并放到pycharm目录下的\bin目录( ...
- 关于Java IO流学习总结
一.IO流的三种分类方式 1.按流的方向分为:输入流和输出流 2.按流的数据单位不同分为:字节流和字符流 3.按流的功能不同分为:节点流和处理流 二.IO流的四大抽象类: 字符流:Reader ...
- Log4J的配置与使用详解
一.简介 Log4j是Apache的一个开放源代码项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件.甚至是套接口服务器.NT的事件记录器.UNIX Syslog守护 ...
- OAuth授权之回调accessToken
具体说明见新浪官方文档 http://open.weibo.com/wiki/Oauth2/access_token 具体实现 第一步 打开回调页面 // 宏定义client_id #define ...
- 关于HTML设置访问密码。
如果你要设置访问密码恐怕要使用sublime_text了 废话不多,开始!!! 先把这些东西加上: <html> <script> 然后开始写代码: 先辨别密码登录正确的情况: ...
- HDU-2544-最短路(floyd)
板子题,实验一下floyd. #include <cstdio> #include <algorithm> #include <cstring> using nam ...