传送门

良心解析

其实以前在求某段序列上的区间统计问题时就碰到过类似于这样的思想。

当时的区间统计问题思路大致是这样:

选取一个点作为中间点,从这个点的左边和右边统计出满足条件的点对。然后当前的中间点就可以删去了,接着递归统计左右两个区间的方案数。

其实这就是个分治和分类讨论的思想。

满足要求的解无非就是这两种:

1.区间包含中间点(也就是两端点在中间点的左右两边)

2.区间不包含中间点(也就是两个端点都在中间点的左边或右边)

所以正确性显而易见

淀粉质就是把这种思想应用于树上的路径统计上,选取一个点作为根,然后统计经过这个点的路径数,端点一定是在子树中的,

不过这会遇到一个问题,就是两个端点会在同一颗子树中,这就需要再统计子树中的答案再减去。接着再递归求解每一颗子树。

最后一个问题就是根节点的选取,需要选重心,防止出现链导致时间复杂度退化的情况。

其次是统计答案的方法,对于此题来说有个神奇的nlogn的方法,上面的链接中已经给出。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 100001
#define INF ~(1 << 31) using namespace std; int n, K, cnt, root, tot, ans;
int head[N], to[N], nex[N], val[N], f[N], size[N], deep[N], d[N];
bool vis[N];
//f[i]表示节点i的最大子树的大小
//deep[i]表示节点i到根的距离
//vis[i] == 1 表示该节点删除 inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline void add(int x, int y, int z)
{
to[cnt] = y;
val[cnt] = z;
nex[cnt] = head[x];
head[x] = cnt++;
} //获取当前块的重心
inline void getroot(int u, int fa)
{
int i, v;
f[u] = 0;
size[u] = 1;
for(i = head[u]; ~i; i = nex[i])
{
v = to[i];
if(v == fa || vis[v]) continue;
getroot(v, u);
size[u] += size[v];
f[u] = max(f[u], size[v]);
}
f[u] = max(f[u], tot - size[u]);
if(f[u] < f[root]) root = u;
} //获取当前块中所有的点到根的距离
inline void getdeep(int u, int fa)
{
int i, v;
deep[++deep[0]] = d[u];
for(i = head[u]; ~i; i = nex[i])
{
v = to[i];
if(v == fa || vis[v]) continue;
d[v] = d[u] + val[i];
getdeep(v, u);
}
} //求解经过当前根的满足条件的路径的方案数
inline int cal(int u, int now)
{
int l, r, ret = 0;
d[u] = now;
deep[0] = 0;
getdeep(u, 0);
sort(deep + 1, deep + deep[0] + 1);
l = 1, r = deep[0];
while(l < r)
if(deep[l] + deep[r] <= K) ret += r - l++;
else r--;
return ret;
} //递归求解每一块
inline void work(int u)
{
int i, v;
vis[u] = 1;
ans += cal(u, 0);
for(i = head[u]; ~i; i = nex[i])
{
v = to[i];
if(vis[v]) continue;
//因为在求解的时候会遇到这种情况:经过当前根的满足条件的路径的两端点在同一颗子树中,这样的路径也会统计到答案中
//然而并不合法,所以需要遍历每一颗子树,减去每一颗子树中满足条件的路径
ans -= cal(v, val[i]);
tot = size[v];
root = 0;
getroot(v, u);
work(root);
}
} int main()
{
int i, x, y, z;
while(~scanf("%d %d", &n, &K))
{
if(!n && !K) break;
cnt = root = ans = 0;
memset(vis, 0, sizeof(vis));
memset(head, -1, sizeof(head));
for(i = 1; i < n; i++)
{
x = read();
y = read();
z = read();
add(x, y, z);
add(y, x, z);
}
tot = n;
f[0] = INF;
getroot(1, 0);
work(root);
printf("%d\n", ans);
}
return 0;
}

  

[POJ1741]Tree(点分治模板)的更多相关文章

  1. POJ1741 Tree 树分治模板

    http://poj.org/problem?id=1741   题意:一棵n个点的树,每条边有距离v,求该树中距离小于等于k的点的对数.   dis[y]表示点y到根x的距离,v代表根到子树根的距离 ...

  2. [poj1741]Tree(点分治+容斥原理)

    题意:求树中点对距离<=k的无序点对个数. 解题关键:树上点分治,这个分治并没有传统分治的合并过程,只是分成各个小问题,并将各个小问题的答案相加即可,也就是每层的复杂度并不在合并的过程,是在每层 ...

  3. POJ - 1741 - Tree - 点分治 模板

    POJ-1741 题意: 对于带权的一棵树,求树中距离不超过k的点的对数. 思路: 点分治的裸题. 将这棵树分成很多小的树,分治求解. #include <algorithm> #incl ...

  4. [POJ1741]Tree(点分治)

    树分治之点分治入门 所谓点分治,就是对于树针对点的分治处理 首先找出重心以保证时间复杂度 然后递归处理所有子树 对于这道题,对于点对(u,v)满足dis(u,v)<=k,分2种情况 路径过当前根 ...

  5. [bzoj1468][poj1741]Tree[点分治]

    可以说是点分治第一题,之前那道的点分治只是模模糊糊,做完这道题感觉清楚了很多,点分治可以理解为每次树的重心(这样会把数分为若干棵子树,子树大小为log级别),然后统计包含重心的整个子树的值减去各个子树 ...

  6. bzoj 1468 Tree(点分治模板)

    1468: Tree Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1527  Solved: 818[Submit][Status][Discuss] ...

  7. [洛谷P4178] Tree (点分治模板)

    题目略了吧,就是一棵树上有多少个点对之间的距离 \(\leq k\) \(n \leq 40000\) 算法 首先有一个 \(O(n^2)\) 的做法,枚举每一个点为起点,\(dfs\) 一遍可知其它 ...

  8. POJ1741 tree (点分治模板)

    题目大意: 给一棵有 n 个顶点的树,每条边都有一个长度(小于 1001 的正整数).定义 dist(u,v)=节点 u 和 v 之间的最小距离.给定一个整数 k,对于每一对 (u,v) 顶点当且仅当 ...

  9. POJ1741 Tree + BZOJ1468 Tree 【点分治】

    POJ1741 Tree + BZOJ1468 Tree Description Give a tree with n vertices,each edge has a length(positive ...

  10. poj1741 Tree(点分治)

    题目链接:http://poj.org/problem?id=1741 题意:求树上两点之间距离小于等于k的点对的数量 思路:点分治模板题,推荐一篇讲的非常好的博客:https://blog.csdn ...

随机推荐

  1. Selenium私房菜系列9 -- 我遇到的问题及解决问题的方法

    Selenium私房菜系列10 -- 我遇到的问题及解决问题的方法

  2. codevs 1277 生活大爆炸 2012年CCC加拿大高中生信息学奥赛

     时间限制: 1 s  空间限制: 128000 KB  题目等级 : 白银 Silver 题目描述 Description Sheldon and Leonard are physicists wh ...

  3. mysql 外键关联

    mysql 外键关联 什么是外键:外键是一个特殊的索引,用于关联两个表,只能是指定内容. 如我将新建一个daka的表,然后将此表的class_id 与另外一个class的表的cid字段关联 class ...

  4. Airbnb:别抵制我,宝宝要过 10 岁生日

    今日导读 喜欢旅游的你,一定听说或使用过 airbnb(爱彼迎),在出发前打开它,总是能通过它开始一段奇妙的旅行.可是最近,就在这个打着“共享家”概念的服务型网站正迎来十周年之际,它却遭到了很多国家的 ...

  5. Codeforces Round #273 (Div. 2)-A. Initial Bet

    http://codeforces.com/contest/478/problem/A A. Initial Bet time limit per test 1 second memory limit ...

  6. LeetCode || 递归 / 回溯

    呜呜呜 递归好不想写qwq 求“所有情况”这种就递归 17. Letter Combinations of a Phone Number 题意:在九宫格上按数字,输出所有可能的字母组合 Input: ...

  7. angstromctf -No libc for You

    0x00 syscall syscall函数原型为: int syscall(int number, ...) 其中number是系统调用号,number后面应顺序接上该系统调用的所有参数.大概意思是 ...

  8. 2017年网络空间安全技术大赛部分writeup

    作为一个bin小子,这次一个bin都没做出来,我很羞愧. 0x00 拯救鲁班七号 具体操作不多说,直接进入反编译源码阶段 可以看到,只要2处的str等于a就可以了,而str是由1处的checkPass ...

  9. ios之UIPickView

    以下为控制器代码,主要用到的是UIPickerView 主要步骤:新建一个Single View Application 然后,如上图所示,拖进去一个UILabel Title设置为导航,再拖进去一个 ...

  10. [LUOGU] P1536 村村通

    题目描述 某市调查城镇交通状况,得到现有城镇道路统计表.表中列出了每条道路直接连通的城镇.市政府"村村通工程"的目标是使全市任何两个城镇间都可以实现交通(但不一定有直接的道路相连, ...