玩具装箱 BZOJ 1010
玩具装箱
【问题描述】
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
【输入格式】
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
【输出格式】
输出最小费用
【样例输入】
5 4
3
4
2
1
4
【样例输出】
1
题解:
设f[i]为选完前i个最小的费用
那么转移方程:

发现具有决策单调性
那么······
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#define big long long
using namespace std;
struct Ti
{
int x, y, z;
}o[];
int n, m;
big s;
big sum[], f[];
big sqr(big x)
{
return x * x;
}
big Cal(big x, big y)
{
return f[x] + sqr(sum[y] - sum[x] + y - x - - m);
}
int Two(int x, int y, int z, int ss)
{
int l = x, r = y, mi;
while(l <= r)
{
mi = (l + r) >> ;
if(Cal(ss, mi) < Cal(z, mi)) r = mi - ;
else l = mi + ;
}
return l;
}
int main()
{
scanf("%d%d", &n , &m);
for(int i = ; i <= n; ++i)
{
scanf("%lld", &s);
sum[i] = sum[i - ] + s;
}
int t = , w = , cc;
o[] = (Ti) {, n, };
for(int i = ; i <= n; ++i)
{
if(i > o[t].y) ++t;
f[i] = Cal(o[t].z, i);
if(Cal(i, n) < Cal(o[w].z, n))
{
while(t <= w && Cal(i, o[w].x) < Cal(o[w].z, o[w].x)) --w;
if(t <= w)
{
cc = Two(o[w].x, o[w].y, o[w].z, i);
o[w].y = cc - ;
o[++w] = (Ti) {cc, n, i};
}
else o[++w] = (Ti) {i, n, i};
}
}
printf("%lld", f[n]);
}
玩具装箱 BZOJ 1010的更多相关文章
- 【BZOJ】【1010】【HNOI2008】玩具装箱Toy
DP/斜率优化 根据题目描述很容易列出动规方程:$$ f[i]=min\{ f[j]+(s[i]-s[j]+i-j-1-L)^2 \}$$ 其中 $$s[i]=\sum_{k=1}^{i} c[k] ...
- 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9330 Solved: 3739 Descriptio ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- 【斜率DP】BZOJ 1010:玩具装箱
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7537 Solved: 2888[Submit][St ...
- bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7874 Solved: 3047[Submit][St ...
- BZOJ 1010 [HNOI2008]玩具装箱toy
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7184 Solved: 2724[Submit][St ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
- BZOJ 1010 (HNOI 2008) 玩具装箱
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Submit: 12665 Solved: 5540 [Submit][S ...
随机推荐
- XDU——受教了
存在的问题还是很多的 GG 突然觉得刷题的目的并不是追求A.我们应该在那个过程中提高代码能力和建立模型解题能力 会的算法会巧妙应用才是王道 吐槽自己两句,写高数了
- OC 导入类 #import和@class 区别
objective-c中#import和@class的区别 在Objective-C中,可以使用#import和@class来引用别的类型, 但是你知道两者有什么区别吗? @class叫做forwar ...
- Zynq UltraScale+ MPSoC 多媒体应用
消费者渴望更高的视频质量,推动了视频技术的发展.MPSoC 基于 Zynq-7000SoC ,包括一个可编程逻辑 (PL) 的桥接处理系统 (PS),但它在 Zynq UltraScale+ MPSo ...
- shell脚本,编程题练习。
题目是:将 文件file为 b+b+b+b+b+b+b+b 变为 b+b=b+b=b+b=b+b 解答方法如下:
- vue建项目并使用
今天来回顾下vue项目的建立和使用,好久不用感觉不会用了. 下面两个都要全局安装 首先安装git,地址 https://gitforwindows.org/ 安装node, 地址 https://n ...
- java面试宝典第三弹
Http和Https的区别 超文本传输协议HTTP协议被用于在Web浏览器和网站服务器之间传递信息,HTTP协议以明文方式发送内容,不提供任何方式的数据加密,如果攻击者截取了Web浏览器和网站服务器之 ...
- history.pushState 实现浏览器页面不刷新修改url链接
最近遇到了在不刷新页面的情况下修改浏览器url链接的需求,遂求助于万能的度娘,最终通过history.pushState()完美解决问题.现在将我理解的一些内容分享一下,不对的地方欢迎大家指出. 在使 ...
- web安全--<a>标签带有target=“_blank”
面试时遇到安全相关的一个题目 :超链接<a>标签带有target=“_blank”属性的,容易被利用进行诸如钓鱼等攻击,请问如何在书写代码时进行防范?(谷歌和火狐环境). 自己看到这道题目 ...
- 主DNS服务-反向解析
上篇说了主DNS正向解析 当中是有个小问题的,什么问题呢? 试问当我们输入wwww或ww或更多w的时候它还能解析出来吗? 或者不输入w的时候还能解析吗? 上篇没有定义是解析不了的,怎么定义呢?很简单, ...
- css3如何实现click后页面过渡滚动到顶部
var getTop = document.getElementById("get-top"); var head = document.getElementById(" ...