题目:

题目描述

为了绿化乡村,H 村积极响应号召,开始种树了。

H 村里有 n 幢房屋,这些屋子的排列顺序很有特点,在一条直线上。于是方便起见,我们给它们标上 1~n 。树就种在房子前面的空地上。

同时,村民们向村长提出了 m 个意见,每个意见都是按如下格式:希望第 li 个房子到第 ri 个房子的房前至少有 ci 棵树。

因为每个房屋前的空地面积有限,所以每个房屋前最多只能种 ki 棵树。

村长希望在满足村民全部要求的同时,种最少的树以节约资金。请你帮助村长。

输入格式

输入文件输入第 1 行,包含两个整数 n,m 。
第 2 行,有 n 个整数 ki。
第 2~m+1 行,每行三个整数 li,ri,ci 。

输出格式

输出 1 个整数表示在满足村民全部要求的情况下最少要种的树。村民提的要求是可以全部满足的。

样例数据 1

输入  [复制]

 

5 3 
1 1 1 1 1 
1 3 2 
2 4 2 
4 5 1

输出

3

样例数据 2

输入  [复制]

 

4 3 
3 2 4 1 
1 2 4 
2 3 5 
2 4 6

输出

8

备注

【样例1解释】 
如图是满足样例的其中一种方案,最少要种 3 棵树。

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCABmARsDAREAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/igA/wA/z9/p+vNAHLeMPF+h+A/CXiXxv4ovjpnhrwjoereJPEWprp+o6i2n6JotjdahqV6unaVBe6jfG3tLaSUWmn2lze3BURW1vJMyo3PWrxw9KtiqvNKhQi5zpwg3Vsua6XvPmb5W0kr/AAxSbUm3Tp1K1RYelrXqtRotqKgpNys5804q3wrWUVdO80m5Lxz9mD9qX4Pfti/CWy+NvwH1rXNb8BXviTxh4RW58UeB/Gfw/wDEFr4k8DeJtR8KeLNJ1Xwf460XQPE+jXek63pd3YzQappVtKzoZI0aMbj1ypVKEcIqzjP67g6eY4apS5XTq4KrzexqQlCpUj714auWzel7yMI1YzqV4puLwmJrYPEwnFqcMRTSlHTSyaa0fva3lFO6PopDuDE44JHAIHBx3JNZxUuX32nLXZaW5p26/wAvK3vq31Tvqr+9fo0l5ppa7+vy6u46mMKACgAoAgZ5AzKNpxgqMHLD58jg/L90DJyOTxxzHNdyhG7lHkeqtBpyqJxUk21NqK3TUNZSupK0Xld2+FRaa3nzOUlGSjde6kk0m/ebknKPLeT4jIVPmAAjGMAjI55wTn0/Tp81OF2pOUub3pOHuODVNyn7OMouTfMoxSlLTmbb5I7Dhzci57KaVp2vyuSbV4XSfLLSSTvZWV5PmZJVFBQAUAFABQAxiw4UZOCckHAwSOcHvxgdSc4zhjSTjdxbd+VuOjto7a+rt16+UiJ86hJws5KUUk76puV3ZNPRR3vpeOjbBSxPOOmcgHplgOp7hc/Q56jFZw9pamqlufVVOVe7e07cvvO2sVo23ZrVtSY0+ZtxacOWDi+rvz36/wB1L9W7tvrUoKACgAoAaTj/ACfX6Ht+XoTxUt2W9unN0TbaWnW9rb79202f1/V3r+fqIGPOSBjAxg5+8QON3tk85APQjBMKUteay0sorVq8pxjPmvqm4xXLbeS1bTuK7vbpu90rOV1o73aSSv1a1bYobOeQey9f15PPt1+pqlK8XquaKXN63d9Lrpy9dG0m007ym7u+qdnFrTS7T1b7xfTR6PXVuqygoAKACgBCcKx9Bn8t/v8A7H8+Tik7pNpXaTsr2u+mttL/AIeYm7Rbva3WzdtZq9r67LTunrbVxB5CTjBA6na3vgfe9wT6DbknLZhSdrXcpQfLO0GlN3cZSi3JqKi7S5XJylG9n9om87rRqElGV3ZyhZyUouKd25e7Z7LW6upMmHT8unT+L3PoMf8AAuTjnT+vz832/PV2d7/r8+/p+XfUoAKACgAoAKAE7H6fh/H15/z83PFHRvt/9t/8j/w9xPZ6620fT7Wr18l+OujvynjBfGDeEPE6/D6bw1D45OgasPBcvjKDVrnwfF4r/s+6Hh+TxRb6JdWusXGgJqf2VtYg0q5g1KTT/PjsbiK5McgxaqKnXnQlF1KrUqftYydOM4qUVzKD5rOPJzWa95t3bdy6Ps1OlOrzOjosRKk4qcoOcnP2XOnFN+9KLkrJqz0Umfnr/wAExf2XP2qv2Sfhb8U/hx+0p43+AfjceKfjb8U/jV4Q1H4HeHfiboDWmpfGj4i+M/iZ8QtG8UJ8Qde1k3llo+veIoNO8FTaZ5VyNCgkHiGa91Rvtz64eFPDZVkuWQ9rWWTZZQyijXqSi28FhlL2DlZcyqylKXtHdxcVT5Um5J41f32YY7GrljHHYurja1FJpuvVhGlFxbVuSEKSeqbvKWqsmfpkpC5XHpnn1J5P1xn6hucGpjKXK7+/y+65KyV03aKXdRt98dX7zLV/ebT1s22+qurbvpFNeTezUhwbJIA4HU5H09fbnGfr0LCleLck4NbxknfdrTTXb72l0bBNO3K1LXo9ltff8tfJPUUHJPoCBnI5+97/AOz064OTjFUndJrVdd00r2u7rv0v87gnrJSXLa3Lf7Wr2+Su+uqWrTFpjCk21sr/ANO332+Wl276q662Xz9b/kvv8mfJH7cOoeCdL/ZO+PV78Qfgz8X/ANoXwnH4NkTWfgV8A7DxrqXxf+KyTX1pb2ngXwjY+AtX0TxLM2v3rW1prRtNTtbGPw5Jq8viCR/DyapE/m5jOFGnh6k8PXqupjcHCjTowqTo1sVKpVVKOMio1I08NdKWLrVYTw6oxUa0JuEU+jAU1UrytXjSUY1JVMTNP/Z6Kg5VI0uVp1K3KuajTg/aupLlg4zmpnyD/wAEUPCmreCP2LbvQ9Z8K/Gb4dXN78afix4ut/gv8YPhb8cvhfbfAXSvHWuW/jPSPgX8JNO+Pml6V488V/Cn4X6frVv4b0Tx29pDoHiPxHbeLbvQLOw09V0iD3cVCNChgYKqsVKOFVKeJUoyq4mtSrVo4iq6SlOph8LGq/ZZbSxMpYr+zoYR4mrUr+1qS8+jUp1MVmE4Q+qqVTD8uBWsKEY4eNNVHUTcauKxvKsZmDpy9gsdWxEcOlSjG/64NLt6KW7AZAJOW6A9sLknsCuetcbko8l2vely73tLlm1F67y5NOt27rRnSk+ZJrli/wDl437vWyaWuvK7efd6NRJ820qQcgf+hc/T5R7/ADDrjmee0W3Fq0qUO7bqcq6N6QbtK7+etxJ35f7zml6Q5tfmopr/ABJXvdklaDCgBMjn/ZAz2HO4DnPH3f16nGaV3dpxaikmpdHrZ+lut/x3FfdKza+ymr76emmv4as/C7/gvN8J9L+Nn7MfhvwLpPw2+KPjL4vXM3xBn+DWvfDL9kf4+/tM6h4a8SyeC7rTls4NW+C/j/wBb/s++JvEWs33hkeEvjV461TUtA8KXGmajqyeGdRSyv5IuKbnPFQdFSnKlh6svZOUMPTrXxWEXL9crSjRo1Fb3aEuatXpym6SapVVLsw1oUalSs4RorEYeNSDlCpVadLG3qQwcU69eFOmpuU4LkpzlShNupVpM/W/9n6bx0/wG+Cf/CzvDF74N+In/Cpvhv8A8J/4Q1LxWPGmoeFvG3/CG6OPFPh3UPGuB/wmN7o2si90+68Uf8xy4ik1UnddGvXzCWHeaZnPCVfbYSeNrPDz9hKg3h5V6vs6qoyty02mmoxVoq6srHjZasRTwGFpYilyV6WFpRmlUjLmnSc6V7p3TqpKtyu8oKUoTcpxnI9fD5/h6DOdw9SOOeenbI98g1yOS5rLWNvj6c3NFRjbe8r3Xknfqdqfutz9ySTfI2m7JvW602V/LRXu9UEoOeDwB1I5yWAA9/l/UDOc4mVRRi5tStGfs37rundpu1tYq121pZrXRi5rynFK7jThUirpc6nzrS70tyau9tVvuSKcqDjHt36kf0z+fJxk6d9dvx1kr7/3U/8At5a6Xdd9dvx1kr7/AN1P/t5a6Xa0AMY49DyB6HksPXGPl+bPYjqcms5WvFcyTu2lL4bR53KUlfXljeS13vu7MEm1NRTb5XonZu3N376W7Npt6M/EH/guV48/bA0r9mBvhx+y18Lv2mtY0Px14c+K/iD43/Gn9lG78KQ/F74U+Ffh14C1DxL4P8NeFJNY+IPgjXtJufit44OiaR4m8W+C/wC3fFGhfDPSvHln4d8Man4s1fw+kfF788ZhqFRSWGVTC4rE1HTqSc6UMfQjLBynSu4OdOVWsptJRjTTs4xqtduG+r/V69RyhUlNSw9CldRUnVo4jmxUpSThKFGUYU+S/M6lSnJO0Gz9Ev2HPGHi/wAe/sYfsreMPH3hrx94R8a618CfhTc+LtB+KcMEHxFh8RQ+CtEs9XvPFsUOs66y6rrV5aS627XmpT6rJBf28mtR2ustqFjH7uaqj/auaPBKLw7x2J9lCDVqVKrKUqcZbRboQcYyUOaGj5JyilN+Llyq0suwSxMr1KOHp4erNJ2qVIqUFVin73LWt7SClabjJOUVNtL6q8zjO0kDGfbnAzx3/wA561yNWtf52TdrX6LfbX57216ufStpd0pKPLde9d2uu3fbvro7ODZXOMegJGTyR68dOc+owSQajmjdK9721SdlutdNNvPru026960nyt8trf3tJX9PhW+/Mui1cOfbp/I+/HT+XHPNa3fZWs++6fpa3XuuqbCLUl5rddU7tWevlf577NrQMYwzG4yRkYyMZ6v68c5A9OfrUNytKKi9bpO0X1nZ2mnHz966V1e7Yrxs7v1Sk095LRxkpJ3Ts001d66SZ/Nd/wAFfNc+IPhD9t79lfxf8P8AxX8SPi3q2n+C/B2kaX+wd8NvG37f/wANfFPxZ1XVPj9pTXnxL8L+Pv2ZdY0X4LQ6r4a8OWutDWtM/aTl1LwMPCWl6tPrulxaTPHdHHKXbMsdTqJSdbMMs5pSrYjlwGHhTrwrVnh60qmDqYapeONq0oxhUdGjLDqoq3NCU4tRjls5c/s3SweavDyUISq46u6FCWDw0atG+MpVq+JoRwWGqOp7GnXxf1iUZRjUa/pQR8oCylTheMg8nfkZBxx7Ejg88nO6lFylGN3FNrnacYu0preW9+VbdWwpOU6cG1abhByhzJuMmpOUXJNptNpXTadlZtajRKSWAQnaASQQR1YY+uFBIPI3Ackcrn+NJNum2pLS/wDDc4vV/bskle93q9GUruN37svaRhyPV2ckufTS1vesm3a6vdNkiNvBOCMY9OQc4P6dPccnBpqSc5w1vGNOV+j5/aJdens9fVb2bYtea+lpSj68ttfR3XnrtuOqhhQAhIAJPQdTgnuR0GT1H8yeAcq6Sv0W7+bX5rf1bdk7ptJNvZbvV9Wuiv0/PXRt4fiLxN4c8IaDrXijxVrml+HfDvh3TLvWde1/W72303R9G0ixgnuL3U9T1G8khtbKytIIXluLm4lSKJFZncZ5mpUp0acqtSSjThGU5Tk/dUYW5m2vVWXxPTlTalfSlTnWnTp0oSqzqzVOEIRlKUpPmsuVarms7N2T2Tbvzfy3/t2/8FfP2l/jNqlp8Fv+CdUsfws8L+JoL14/2ivEvhuHV/ih448NLYX5HiX4PeBdcgm034f+C9UMM02g/E3x1pWqa/4h0yJte8HeD7Cwfw/4jv8A8mzzxZy3BvH0sqpQx88LCnFT5vZxdWtOpSpuKqKF4OolTvzWhWUqdZxnGcY/qeQeF2NxeDqZpm1ZYDDwqKPsJNznUkqkoSpwdOUoznDlU6saalKnSftKnLSftH+dnwc/aC/4KJfsQ/tU/EXQ9B/bb+JHxg+G+h+LdB+HmtaL+1L4t1T4ofD7VPi5ZQa9Ya3F4q1fW5ptf+HejfEHV/CutmXxT4J8Q6Vb+C9VNvqGqaRqXhKy1KJPjMt8ZMxrYGhiqmEhUr4rDRx6wqUU6eElObu25JPlt7OFpOrOThTjF1JQUvq6/hRl9X6r9XqzoQxeHVSnO7bc1CUnKEbO7jC1WVNJ+57SrJezhUkfrz8U/wDgtt408f8Ag7w18DvgF8N7r4L/ALY/jjxTY/DrVNL+Lehr4o0H4d63Hqf9n+OvEvhTS7fUNLg8eW/w+s1utW1KPxC2jrprJZyajoOqeH559XX6jM/F/LaOURzDAYKeJrUqMKuPkmvYYKC1nzylKM6l7xVoRk4yl7OTdaE4nzGD8JMyWIU8bi4RyzFTqywOKi4yli40qk6c1Sp3c1KEoNzgoynZwmr05RnL4f8A+CV//BTH9uRvjH458PfHj446r+0joHxL13xb4q+HHg7xxpnhDRNbcaDrWoxax8Ofh54j0LQtAh0fxXqXhG1tvHnw+8O6lFP4Q1m5t/EPgBF0W8udH8R23HX8WquX4nB4jMMJGOAlWWHx9OFOTq4OKi5zxM+XmnJ05J0506UZRjDknUaSqSfRmnhcqOHx/wBTxEnLCU6c6dVv3a1Wq3GnRTk7x0tKdR3VKbcKsouMoP8Ar98FeMPDnxA8J+HPG3hLUo9W8PeJ9Is9Y0e/jjkhM9ndxtIgntpgs9ndwHfb31jdJHeWN7HcWN7DFdRSxr+04TF4fHYehjsJWhWwuLpwrUKkHeNSEk3GUetrNN9nyxlqrv8AIatCrhalTC4mE4YihUlCrGas4yjKcZJ62um9ldaxabTUpdVXUZnAfE34n/Dv4N+APFXxQ+KXjPRPAfgPwZplxrHifxZ4hvI7HStI0+3Ul5JpJDunnmbZBZWNsk19fXkkNjp9tcXs0UJwlXpUKNWpUqQjCjDmqTnJRjBc02vebtf3eXlTcuZqFlKST0wuFr47FUsLhqU61atNUqdOCd5TU5X1atGEU+edWTVOFPnqSmqcJyP5Yf2uf+Cl37bv7aHxU0v9mv8AYp1jW/2TPhl4sudM0PWPiWui2r/tQazoviXWtI0XTfEyyamt3pv7P+mXUevaXqmlaP8AYrv4rzQXmiyaprHg+41KawtvxjiDxiy/ARxqyzD0sZTwsayeKxU61OhipU2oKjQhCjOfLVnJw5mnGKXN8D55fq2TeGNapgHmOdV/q1DEU8XhsBhqcrTlj6blGdbEVI8yhgsMoqpUxEZOVZuKoQqRVz43/Y1/bN/4KFfstfGXxnoGhftI+M/2lfhLrnxE8SaH8K/hn+0j4q1Lx7B4tuNEXTJL34c6J8UtZEnjPwR421m11Kyu/h5qTa3qHhHWfFVw3hXX/DIuNV0vUIvGy/xYzeFDDzxijXxWEvhc6oVqNGgoVMPiZ4V4ijKjWnF0bKMJziknaE+VpzmfTY7woy9cyp4mdPDxyfKcfhq8ac51pRxuCpVpTrUowlJxpVJqn7SaTcbupyPnZ+m37QP/AAW08V/GTwxoHw2/YztLz4LfFDUNE8ReL/ix4i+KXhHT/Efin4YeAvAfhrWvFHjvWPBnhy5vH8PaopGh3vhLRfFniK2u47XxI1zZa14EsNZs7XTZ/o858WcFg6NOvleU1cfCquWVf2lKMY4mFWlSnR5HVjVcoQr+2p1eWNOtCnU9lKoos+XwnhPmND6zVzbEwpYeNLDV8LOE+eniaOLlio4Sth5pyhU5pYaoq1KlKpPCtU44r2bq0+bw7/gjx/wUq/a7Gmax4M/aw+LWq/tBgWNr8T4X8TabokPxMsfh1q8dlceOv+EL1XRNJ0tvGd/8D9RvoL7XvB2rWcup+IPhvqS6v4OvbTVfDV54f1Hgwni5h8Pm2ChjoTlkuOxVTKZZhyzdPC4qljMRh8PjJxcPrEoYlKMaqdNKlPmnJwppp7cQeFuJyuGKjh6jqYnD08uq06UnBe1WJyXCYyUYycoxvKpV5abv785wg3KfNf8ArO0rU9P1fTbHWNMv7fUdN1WztNQ0zULOVLiyvtPvYUubK9s7iMsk9reW0sU8E6M0ckTpIjFTub9w54cspcy5YuMXLdc0m0krb/Zd1dWktbJ3/IE+a1r6q+qcettVJJp+T1trZrU0N6+v6N649Oue3XkHkEVfS/Tb81tv03223vdl1a/S/L1vfa1mrv8ArV7ni/x8/aB+Ef7Mnwy134tfGXxZB4Y8KaQ1raQhbe51HXvEmv30klvonhDwb4dsEm1XxX4u8RXm2x0Pw7o9tc6lfXUiKkKwpcTLw5hmGCyvCVsfmGJhh8LRUXOdTmUYptxvypNtbylK3LCnz1ZtUoVJnbl2X4vNMVHCZfh5YjEzUvdg4qyp3blUnJqNNLl5U5yXPUcaUHKtKNN/ymftEft1ft8/8FBPit4g+Gnw48f+Jf2Lf2ZvBkGs63400r4Xa1FYfH7W9F8JaF4p8Uatp/xE+M2lT3R8K6hqdl4Wv9KvPA3wqmsYdGnl1bTdf8ea1f2FurfhvFnjJDCUq1HK8DGrL2lL6tUqPmWIqOtCNOlKi5U4rnpyqYhOo4pKnSaUlKEn+v5P4VUI4bC4rOMRWc8bKEIYSnJYdwg3UjLE1K0pOvCnTqxhTpctGUK0p1lzxcJHl3/BOf8A4KMft/8A7MWiaf4e+MfxK8T/ALXvgK20m/8AFx8KfFbUjqPxbuPhPp+ra1a674o+FnxS+yPrfiDxJ8L5dG1iz8XeC/Gp1+01nwto2s+J/C13o40XxCg2w/i9UpZliKeJwftsLTqKkqHNH22GrOSjTqVcQ1Gn7HHpwVCPNOGHnVpyr+zheR15j4SYL6vVhhKtbA4rDwca+JrzlUoYjFuvJ0sNJKalRUoclWNaCdKo3CM5XVn9Gft5f8Fi/j18ffAPj/S/2A/G2o/Azwl4E8B6dqvxK8baj4V0q4+N8HiTx74v8PfD/wAAeDrWXVJNd8O/DyWa68Ry+Np9W0eHXNQ1Dwxo0tx4e8S2rS3Rh9LM/FfDYKvGngsHVxOUpNQzFc1KVaEKFevUrxpTUK1PkrYaODlTq0lUjUxFOVWMYu55mV+EuL9rChmtR080rZhSwDy+KbqqE8RTpSqxdrzp8tRVI1YfupxTqQnNQqSX2V/wSQ/4KD/Gbx98M/Dnw5/ao8fW/wAV/E3hrWNF+HviP4sXemaVoXjSx1LxDHE/wm8aeM9L0W2tdJ1jwR8XrKSHSF8UWlraaj4M+KUOo+E/FTanpmpad4htNuHPFTD43OcLk+aJ4SGd8jybFyjem8XOEKryiooRlJVoqo+TEVFGlP3YyqqorLw+JuAcRktDEY7CqVX6ricxw1SyTTweBxdfCzxF5S0anRlzwd5u86tOMoXm/wChdPuj6DPTOR5gOccZ9fx6nmv1+nJunGUoOk2ov2bs3By5nyvlbjdW1s2u0m1eX5vFJJxUubksr66+9Oz37L5Xd9XYTevr+h+nXH/1/wCdU2krvbXa7202Sbv2W71tezab0t53t8tO2nz+/qfNP7UX7V3wg/ZJ+HsPjn4nalqN5qGtakvh74e/DrwpZrrHxH+KXjKaORrLwh4C8NrPBJqeozfLLf6hcTWug6BYCXV/Eur6dpcMt4PMzTOMvybCPG4+tSp0bSjCU2251GqijSgoqVnUcOSUp2p03KPtZxSPRyzKcdm9aVDBQk1T5JYiva1LD0eeSnOrNvRcq5owjzVZwUnShPRv+SD9or9sT/gol+33c/GTxZa/HLxN+yR+zr8IPB/jnxfoPw7/AGaPGd94b8TazruiaIsHhGz8c/HjSzbeIfG+qSeJ/E/g/UZofCcvhr4dwwQ6dJZ6frtvqEWpyfiHEHjPLC1KNLL6NL2lTMMPgvbyjKrBRqUsTiIV2nuoLBygqjjKEpVXKN0pTh+u5f4UUMJDAYPNZ1FjsRjcHVr4CNo1aOXY2pPDUIO05U+fFSrvFNKblQp0HCvGF6al7D+wF/wVK/bQ/Zv8K2fhv9q/xbrv7WXgDwjpGhaj441vXIrCP9oHwt4C1uKyj8L/ABf8LeI9mmW/xP8ABuqNf2Fp4v0vx3IviXw5rl9ot7c+OY/Dmsq9n2Zd4uKjj6WFznByqYXMPaVfb4dwkqEqahenyJpuLi17FJXrPnhhnOcZxNc18IU/rFLKMeqFRYrMcBQp4pTl7XH4bETpYTBuSU4054tQbp1py9jDm5q1SMGmZf8AwUI/4Kz/ALWn7Q3hrxZe/sSfGi+/Zs+DHhvxV8N/htN4u8O+E9KuvjJqXxJ8aXmu67qEHiLWPE0Go2/hWP4deGPB+pN4i8G6Bp1veXOv6lYaZqHijUdCKSXPbjvFZ0szrYTDZf7DCqhCth8Rib8tdSqRhTnFUpTlCjUlOCnJWVNXUpRrKRz5P4RVKrw9HMcTLD4+s8VCphVGMpQr4WniKlalGUFKM5xhRnOm3KUKzv7GNSLjf9jf+CXn7fPxC+Pfw0+H/hj9obVdI13x5di48Dap46060stJvLf4veG7F7rVvAvjnQ9Ogt9Ltrnxjodv/wAJ58LvGOj29lo3i3QLm88N3mkWPi7SUl1b1uDvEfDZ1muL4ezF06WP55vLK0ouMcxoQ5m+Vxi4QqU1fmpzlGo0pPlaalL4zibgrE5Jh8Pj8PVlWoShzYqMV/u7dfEU6babUnCXs5JzScYTvGbuon7NRsGDYOcYBOepG4HgnIII5B5yD3Jr9Sh8LV7uOja1XxTsr3a0Wjs3q2m+aLv8NFpubSsnytNqzknzWdnqlZK191qm1rJWZVBZjgDqcE+o7DPb+fPBJJaK97JNNu9tNfPrayW7dkk27MbtGT7Lazd9ZLZXbW197JtvS58Cftuf8FAvhT+xjocemXNlP8S/jNr+h6nrvg34LeHtTsrDUZtB0vK6n49+IPiG6S4sfhp8MtDkaJNV8Z63BM11cyx6L4T0jXfE0tvo0vz/ABDxJlXDmCeKzKsoxmlGhQjd18ROTahTjBJyhzP7crJWkpNKLa9vIuHM0z2fLgcNKpH6xRwzrNxjCNatOUYQhdp1XZc1Tk5o0YSjUrShCcHL+Sb9oX9oj/gqH+1P8Pfih+034x/bP+Jv7Pen+GtU8OeHPgT8Nf2Z9d8Q/CD4ZaR4h8TeIfE97Y32rfYb1vFXxVm0bTPh74h0+bVfH2q6laX1zeajJp/h7R7O0tbS4/F8y8Z8wlj6VPAYWlRwmDxWGlmMIpzxOLyetjIYKpiIObtRl9YrUeSCca0KXM3BWqN/sWXeEuBp4qplWJxssbmksPmtWpN/7nQrYDBYjMKGBpxjFc9WgsN7GtiEpYeVacIwrzg0z9Mv2Nv+Cwv7QfwX8HRaD+21p+sfHnw14c1KXwH4n+JfgvQdJtPjZ8PPiRaRXi2Xhnx/4csz4f8ADPjvwz4wXStQvvAPjzTIPD2s6gttr/h3WLHV/GOiTR3f0OT+KtB4ivh84hSlhZx9pgsRR+KtCVarCmnBPWzUKdWcnHkk1UqtQXMePj/CXE4ijhIZNiHUx+Jp+2WEnJwjWjFTlV+rV5JRqVaajNKhSlUqT5VCMObV/Fn7b3/BVT/goF8ctX8E/ET9ln9oa1+AfwY1n4v6zoXwi0z4eeG9D1Cfxxp/ws8JJ4k8VeIvH/i7xTpWs33inQfEviHXfDfgQ6DZab4f0SxhTV7rUNKu9bt5LW3463i5y43EYV5RPArDzowjJ1YVJYivVzGWXrDqVCdWnKUaP+2UJt+ylF00qs1dPXA+E0quHrRnjJVMVSyTH5rUhGLU406WWV8Xh1Upz9+lVVoKtQqJYmjNOnUpUqqkj+kn/gn/APtt6h+0t4B8FQfEGTTf+Er8UeFpNc8O+JdLhhsLXxPe6C0dh8RvBHiDRIWaDwx8U/hfrO+z8T6LZSPoniXw/Jp3xB8Ix2uj3Wq6Dpf1vAfH1Did5nlWMg8NnOS8ssRTmtcXgpz5KOYU+ROmozdlUpRm6tOUoucIxdz4TivhStw3WjKL9phK9ZUYVFaTjX9nOooSSk5cs405uFVxUJOFSLm5xu/0sVl+6GyQByQcnGeegHPOccZ9xgfo91zOD+JRjJreylKcVrtvTel763ei1+RWqv0+7q1s1fXldvLW7WrdTAil/wBW2Dzldp/2txC9+5OMdevBJo7q3MtprXWm+ZTsl15eZrzS3bd1eSjJwSlJRlZNNq9p6yS1cVpKVveUXdXbZ/L7/wAFGP2vYP2jfH3xH8AWLya1+yf+zHqWhWni/QLW9lh0n9qT9pXWPEFzonw1+FGtXNo6Nf8Awv0XxPpuo6z4ts4HFte+HfC+uatOZk1bwpcwfzf4qcd151a3D2UVo0sPSco4nF0Zz9oq2GU/r9SnJJ3hgFPB0bfDWnjk237Gz/ojw54DngqGT4vEUlic94qjL+z8LUjTbwmVJN0a0oylpiszmqtWlaLlhKGCd4yWKnI8Y/Yb+F13rl/oXxr8fXMeveK/jv8AGiTSNK1S4soImf4c/ByHUvHPj/xHBbw4j0yw8a/EPwZ4e8PaHaaYsenaP4L8K+AvDdii6A/kt/OefYtT9vg6VV0a9LAUKuIalPkjPM6aoUmuZuUqWFhKnmdVSlz/ANpVcXZ2av8Ap/EVXC08XTyvB1FTwGVU3Sy5qKlKrm8ITp51jKjbtaviKWJwrjKLX1P6vKD5lPn+fPhDo1v+0Jrf7bfg6SBbvWfiV8PfiL8Z/CayWyTwv418AfHPV/Eeh6i0koMZHiJdbtNImgdwk+k6rqNtOTaz3Ct1VMR9TiqtK/sqWMyzKMOnJrlpVI1pKcVaXu4V0/rElu8TDDqyV2/oc6pTyvB8BYprknhcvxeYV6cYxksTOri8JCvTnJyslSoyqYdNXvha1eFm5K/hurwX/jn4N+H/AI2eFtb1Lw38Qfg9r/gv4Y+JvH+kyr/wk1h4V+IPhbUdG/Zr+NA1K6SWSfXfDttcan+z3481GcM3iXwU/hlfEKT28cskvpUsVOlSxUORSi8LWqvDVGoUsTHC43FPNKGISkm3jYPD4ujG3uV51UmmkUsBhqWc0OHMbUlHLc+pRzTIcYot4jAYjHzlPA4fATcXTpyxFdV8NU9o7vD0aWtoM+bvgteS6j4I8aa/oSReGvG3wY+LPgDxToSi9W3v/DepaR8Ttc8GX8tpKkqmS20fxp4r+FmWfzIJtBuhc3TSQzwxy/QZhTqU6ijz1q8MdgMDhsLXlBy9pQzLLlj82xOJeqWIxGDWKdG1nCMlGykk1ljo4bHZrgKOJpUMPUxqz2hicNS5VSwuOw+c15ZZRnG7vOtiqeGjUlK3uSkrqKP7aP2CfjfonxS8OarYaG9v/YOs6D4b+MXgz7LIskEWm+ObrWdL8e+GwEQLBfeDfiV4c8SW2sWTN9qsrvVooLqGANbxD9w8B85xOL4UxeQY+c3jeGsfLCQjUi1KllGJcq2XQk2+ZynKniGpSWsFBKyTb/k7xMyaOVcR1XGMYrGKVWracp2xmGnKlXXM0l71OdCpJe9acpRu3G5+gd1dQWcM1zdTQ21rbwy3Fzc3EqQ29vbwq7zXE80jLHDDDEjSyyyMqRxh3dgilj+399e34Xv16q3pvq2z883212/NpderWnndXbTb/km/bb/bD1D9qjxp4h+J9vPHL+z/APBzx9bfDn9lPwNqUYn8LfFX9oV9Jv8AxBqf7QvxB0i4/wBH8Q+Gfgr4Qgfxx4b0PVY5NLXVb/wRpVzbJeXvicS/yr4k8dVM/wAxnw9lOJnh8voOU6kqD5J5lHm5HUUlKz+tVlToYZar6jVx1aUJV1h69P8AqTw78O5ZdUy3DYmEJZ1nNH22ZVJpP+wsqpqVR5fFa8lXEUVUnmNR3qQxFPCUaVSFKeJhU2v2LPh0nw38H+Dfir4nkln8WfEfQPiv+0/q+r6y00+uWPgDwLodzoPwpTWr2Zvtcmr+J9W+IGv/ABY167lfZqmu6nqMNwrvpunbPwfPcbWxlLEYKjU5atGvRouMZp03UxC9niaNN3d/qkKFKinKTnK15OUpTk/rM5r0cRj8XRw0adPL8L7PCqmk+aGAw840o11Cyg5Yn97NuKVtU/cSS+HfhL4Q074l/skftSadc2kn9ufC2L4J/tF6ZDGHt5bGxuNK8aaR8Q7K31FAssMuo+HW8QXEtzDIJbG9sdMv03XNjbMPWxWInh82wuKlUk6Nd4rL5wXvPE161eeIyuPJe8qlSvHD1JRetVx9jJKMpM+0zqP9l8SZHS5PdqZTRy3F0lyqlLDzoxy3Ee3dtMPDDupapG6pObrwblCN+E+K+n6/4l8DeFvj94Y1CbSPGfi7UPGnwD+LOr6QYNPOq/GCx8PWGt3UmoOUKp4c/a8+E9lY3HxEsCn2K5+I2lavrsSQ6/di7j9XB4unl+IxLVX2mDwccPmdSnUlOSlltStUwtLC00lrPKMfVlUnVf7ySxiptuNNJ8mFy+k8xr8FZxFWwlatW4clGHLGnUrKlVxPsm5ylUpY7D4eDjTaUKSw0KlJudbEM8l/Zl8bQ+G/DXwW/aB8Mp5OtfCX436O0kJuTFqzeF/EngzWYxod7ZxOxuU12z+EnxB8Halb+XLH9svvscCTXVwyD0M4w2KorFYCqmqNTBV4QqRh7kc2x2Nr1600mnrh6VWjXptaxS9rdRaZx1YYfOM8rQxMlBZhk2OWUwU1GUlkdXFUsFKfLNSU68MLToOWkrPl+JK39uv7GfxK0bxv8PdY8N6NfW+o6T4H1PSpPBuqWUon07WvhX448P2Hjf4carptzGGtprGHTNWufD0H2aSWOIaG0ckxlDrX9MeD+cSzrgPKqdWpUq47KHPKc1lX5lVqYzBScatSpz+9zS5ot82vNdO7Tt/H/HWVzy/iPHJU4UaGJqfXqMacXGkoc1WnOnTXKvdjWjJx0s4csouStJ/T/i7xV4e8B+E/EnjXxdq9ronhjwnoup+IfEOsXzFLTTdE0myudQ1K+uGB3Fbe2t5ZNiZlcqsUSvIQh/T6laNKnWqyfLClBznPS0Yrmbs2/V9U3fV+8fJ4ehUxmKoUsNFzxOJq08PhqMU5e0xM6ko0lyJrmlOPLdN25mk3e7f8d37XP7WXjD9oHWrn9p3xe2p6HY6nqfj/AMIfsd+A2lKH4P8Awk8FxjT/AIyftGmx8xof+FyeMLzULX4Y+BfEErSz+HtXu/FOp+HrqMeHNFmT+QeO+NcbxbnGKweAqVYYHCypYB4duXs62LqxqSp4WS5Upv2UXjasrfvKEJ4OSUZ8x/XXAXAOCylzy/ExjSxGXZXVznirEtqVWc6MniK+EoVLcscNhMTyYary+/7aNLGWduVexaJ8L4f2dv2R/jBpOqWNhZeM9C/Zd1PXfHklnF5Q0r4qftI38fhbR/DRWQCWMeAfBfhvw54P0wOSLmyn1WSVluLu4dvx2eKhmWYZdHDTqVKVfGrK6M5tuWJeVRr1amMultVlilT5t4xpxpNyUIzfo18ZHOc9WOxSjGNWrgaUK1KPs6MsDWq1aUqdKi21CnhpYTnhy6SnXlVd3No+UxoF3d/shfD/AOL/AIMvpNC8afs8ftWeK/A2k67bQKs+k2Hjqy8JeN9DumLqy3dhonxC1DSLm4gZvskujat4n0q8D297dRS+pSr1aeKq0sS41aePy7+0sRD2iSrYXBYzE0q1JtO8ZVKWFnHT3oqcJNtJN/d5nhqc+OM6yNunSwtfDYXB4eU6afI62DhHBYqkrWqYmdWpScKctJyio9Jny5+1LpaeFvB83xL+HlldeG/h58b/AIYRfF6DwNo062unRXPgnVde0T4j/Cq9WWIy3UP7PnxT1HUvFfw6gaRLvTvCGtQ6CrCzF3aH3srqVK+JeXYqrztVaWWV6s27NV5PE0MxS5uVTx0MH7HE3+Kp9XakmpX5MlrUZRxdbGUX/b/CtF1aVCbcsdisrwEZ4OrgalVxipRy6pjcPi62McefmgqKaU2z339jrxj4Z8BfF/4CeP8AUtUs9L8GfGP4deNfgx8Qr9r6GHSzar8QbvTtOv8AVI5ZlgtI/Da+I/glrem3O+IWcL6vrDXKLeOkmGbVMXGHPgIzjiMBjaePy5qEuemstr1lCcEoc1qtaOIhKzacYQi24wTPAxOXYXH4fiPL6ipzqZfQo55UTlBKrh83oRniqKlLmVvZxpzdtU60ne/vP+0X9nzx7qPxJ+D/AIO8Sa5C1v4jit9S8NeLraQgyQ+MPB2tal4T8Sk4ihDQ3WraPd31nIIokuLC4tLqCMQSwk/2vw3msc+4fybNldPMctwWMejupVqCnK92mns7PXVdpX/i/MsE8tzHMMFJqUsJiq2HlKLvGTo1akE4tOzUl7yadmrO7V2afxo+Lngz4C/C/wAb/F34gXhsvCvgbQbrWdSMKq97fSo6W+m6NpcLPGLjV9e1Oey0bSLXevn6leWsLSIjtJXpY/FUsuwOIzHE1EqODjKrVbSSUYqbT7uUmlTpq9ueorxldMjLMvxWcZhh8swNKVbF42pCjh6SvzTalP2k1rZRpQ9+q29IXdm46/xsftK/HD4p/HDWofjH49tZdQ+Nf7RWiSr8N/BsE872PwX/AGWdf8UT+Dvhr8LvBMYVf7M8S/tN+LI5ZPHHiaCNNb1P4Y2NxaNMIvFdzbr/ABvxfxXiuLczxmKjjKuGympCrhMPRi2o0Jr2tPHYlwv7s8pw3NLGN+5/aNKtKMlFJL+weCOEckyWniKPsI47A5Ll/wBazeo1Z5xn3JP6vh4zaUXhqmIVOnhOST5sI4+0TqxlOX1J8YPh3o/wI/ZG+LPw5sXsby78PTfs9/AjUNctIo4ovEvxG1zxZovxe+MGtFEyITr2o61bac2n5dIND0rwzaRkR2caH8zoY+GOzLC4tKbwFGjXxsqUtZfUI0a2DyyMle8nSnWqwdVr3lVUkrxu+/h+azjivAVMVOnVqY7M1VhiGk3J4dVq31fk3pqdOnTqODtyKnOnFt3k/lbxbDd+G/gR+xp+0v4R0611PWNBj+L3wK1/RtTtPN0zxXpPw/8AGHxGi0bwb4ktGiI1Lw94y8GWvxA+H+txSl4bnTtY00xJLeW1oY/Uw9RUMyz7AYmtOUsJ/ZFTCSjLVLG4DCVYzT5rJ4DnhHA2t+/Vf2jaba9/BYGGYZpxVkMak5YzFyxNbAcz1oYzD4vGY2c6bUfc5qNan7STbl7D2KTTWvxv+1VoFt8Hbi+h8Lanq118Idem+F/xr8IWVxdxLa618NPiTb2Om/D7x5rwbe1/4u+GdhBrnwZ8U6mZhJdaPZ6fd6pNPLFpssf0GUuviateFSTlVSzirR57yhHH4VYinUwU9FbL8di3DMqML80PZu0nFNmmR47B4zCYTO61NU55VXyvLMwbhGlOphqlRPL8fRhKdSSxVHDQ+pV5yk1KNdSqqM2rfd/7DvixPh78e7LT7HUrPTYP2iPgz8ML3Q2uNQht7A/HLwUuq6X4N1EidnitNX/4Wp8OPiF4bgRlGwa/oejmK5maC1XnxWNzHLMbluZ5b7SGJ4XzXC1PackpShXmqc84lU91KpRqUamFhQ5nK8faS5rud/i81yPDZvw1mlKrye1p18bgca1UjDmwFfEV6+TwjNN2nT/4Ua83FK84wV7qLf8AY58LfG1l8Svhv4I+IVhA1rb+MvC+heI/sUm8S2E2p6fDc3WmzrIA6T6ddPNZTo4EizRSJKokVs/3ZgcXRx+Dw2Owzbw2Nw2HxmGuld0MTTVenJtaNzhKM2+rn0Wr/jmrSdGviKUtZ0qs6NRp3XPQnOlKOr+xKDT8293dy+cP26P2ufD/AOxr+z94j+KF9Zwa54vvnbw58MPBrvJ53ivxxdWl/c2ds0ELi4k0vSLW0uNZ1owFZZbG3XTLWVNTv9OWTx+Js/wnDeT4nMsUo1XC1PDYZ2TxOKcakqdPf4Yqn7es9HChCrNSurr6PhDhrFcV53h8qw9T6vScXiMdjWlyYLAU58lfEO6ceeXtI0MOpXjLFVqMGmnNv+T7xh4T+J3xe+N2mfArW/FV7r/x7+MnjvwnfftQ/Ey7AvbxviXe6QnjGbwJpbR4itPhv+yX8OZ5pNE8N2Cx6BcfGS5S9lttmh+HEj/jDOuJMbnWIx/EONxdStRqKrCEXUcaeGouc4qnCnKTUauMrRnhaceXmWX0sJU5XinWxM/61yDJ8BkfDuNzTC4SFLC4GVTKchotRc61aXNCvmdaWsqlatTUcVXlzNRxdSvSpqOHjSoL6E/bNt/Dmjfs3/D/AMK+ENPs9K8O+Kfjp8R/+EU022QvHpvgr4H/AA78R/CrwJOiKSl6kMOj293FdBfM1FtZivLmR72a5mf5PLsRXr5zj8ZObcJYChOUHK6VXEY7DYrE05q9k6UIVXHm+1GNk07no8D4b61nNedVwqqnlGNdKUYybnha6q4OpXXNKUlKft6CSu5KEpc0nFRkeUfGxPCfg74ifBH4ya3pst98KP2ov2c/hjf/ABh0ZA9vNqmhDSPB/hH4kazZRoqtB4r8JuPh58YPCWqoq3mjeOdHW+tZXuNT1JZerLHKeGxeWSxM4Y3LsRV+rYhJyWFVSU8RltKV21OVeP8AaEYRk7VXVu0lRg3GXUcVj8nzGOGgp4rh7GVc2y6TXLOPtK3JiaeD5GpeypRw+ElWvd0eVuPvYipf88f2ivD3jT4I/EAfCnxJqdzqKeAfil4i8FWmmxvbw+F7Pxl4u0/UPE9n8RNA06BP+JdZ/tBaBqGgeLdZS2Y2reLLa32QLqF5fXEv2GTVo5hShSaiqdTD4TPaMW5VKmHyvA4j6vDASqSfvTwOMoSw8pv3nGLm24tt+xhKuDxeDqcQ4CEZZrm9WWT5ipRjTjWzXMcRJY/ESpp8tF4vC1ZYmVGL5Kc6ipw5krr9bf2D/ipafBL4wfHHwloNzZy2d9q2hftMfCHSIb8SprF1beBdF+IfiDSdCVXmxqPjz4I+LorS4sLIPJcL4c1VbSCZrO6ulwyTN8XkfFPCed4116SwONVDiCnCEl7WGY1K1GNKs1G/Jh8R7CShO/JKpBWi5Rv+acS5Hhc24DdTB+zr4prHZVXqVJuTp4zAVqc8LWpxi2nUrJ1IOo1ZU+d8ySmn/XTomp2GuaZpuuaXcC607WNPstV025AYCfT9QtYby0mUHkCaCaOUZ5AYAnINf3RC7UqmjjP2fJJPeKi0tL9Xd97Ndrv+SFFwlPnupylyqLveKpJQaa2T5uZtX0bWrd77FMZnavYHVdI1TTBe3unHULC8sRqOmzJBqNgbq3mthfafPJFOkF9aeYbizmeGVIrlI5GicKysXtd3slq3/dV7v5JS/C+7bXR6N9Hbtdp7vTTV+Tje6i7/AMkf/BQ/9gvwP8F/j5+yb8Bfgr4z8d/C/wCE3jfTY/HnjO/h1I65rfjD4p/DPQ/GXhXWvij4t1nWluIvEfiu4+H3iSLRv7LS00/w1pOo3dr4g0/SYrnyoR/O/ihgsk4Yq5ZXjliqYbEYHNqFRWc1KtVxeW14qUmnyc0qTnJpqUlH2TcYyk3/AED4cZxxBjsJnGeLM+XHZFmGRU8ApcsZRoYrDZ3SxcKcU3eKp4ehZau7UpNzjr8mfBXxx8efhx8Ov2W18O/EjU7Oy+GPx8uP2XvDWi6hpGmarHpvwz+Mvgvw/qfjK51y6vQdR8S+M9G8RzJrHhTxJeXEb+HE0m1sLuy1OzutZjufw3E4jC4ypnuIq5Nh5YnE5BQzVaRTdbLszxdDCciivcvSoQ23i27qS5z9MxuQUFmeHlTzGum8tjnNOcYzUpyxOW08Ri+ZrWXsqjqJ+Wkmk0n8l3N140/ZN/aV8VWfwR8f/Eu10bwn4H8KeCtIMFtL8QfFen+FvidoOseL/jLZaZodxNFH41v4B4ft9e8HXmvpqcngVtMk1Owc6ZYPbn63C0svzvBexxWSYWm542tja9RSjh25YXE0cJl1WnV5l9Rknil9YrRdOGMg+WftJ8rfg+2x+Jy/JHXzvEVMLgKawmUYdKdSXsIOo8yoQpr/AHqc5wpVHQbn7C11BWnzfPvwl134kS2nivwx4Z8UePdK+HvxR/ZUHhG78PeOfD922ma0PBV/oXjvxcmjeIHvUmufEXhTxRrHh/VPBHiIzy6n4U0F49Jt4L3S769UexXy3DUqmDnVwmD5oZ1GvOvSlSTjUrUnhKcKdBNclKosK4Vo25MRUhUrScpayjHZli8RgKVHE4/ETzGg8HgMqjN1FClhaGNx1eliXWf2XDGuhKs5fuJQVK6aTXimsaDeaNqmmjxDY+Fdf179prwZa/Gf4i+ItatfGGjad4L0ePX9N0bVLPw5ovh7UJ4LK+8T2vgfT9ai1rVpG0yTXGtLX+w5YRZXNr6WUVZYulHC5fUxlOeUPB4LCcsealCpXnKFaOKqclp0VGrUwkK11Otg26qqyfNUePEmKk62Y5jialDCY6rjMZaqmlWxdf6zPDV60KfNdSpUVOvGktKNdKioKSSl/cX/AMEOPgT8PvAn7Kq/F3w34e1XR9W+Jfj34yJbNe+KPEurac3g+1+KWrQabc6bp2pateaTbT63Po0epalrOlWttda9MsF3rMt3qAmuj+ycBZfhsNkOCzKlRi8zznB0Z5ji3Fe0xEMvxOOpUVOW8lh/rE/Yqbb5ak3zNaH4n4h42pV4ox+ClLnoZf7OlGSasq9ShQlKavf+PHldXlslOnG6crn67fFT4d6Z8W/hr4++F+s6x4g0HR/iF4R8QeC9Y1jwnqMWleJ7DSfEWm3Wlalc6Dqc9nqEGnamtndTLaXkllciCVhIYJCMH7uVNVacoSuuaPK3s7P2idtdLp6+Uknez5vhqUnSm5xs9Yyj25ottXWt1dXtt56NP+QH/goZ+xH4Z8E/td3fwF+GPibxd8Kvgj4Y+AHjz4teDPAXhq8uTbf2/wCMfDGheEPHc8Wq6xcalqmra18Rde8HaKl34muLv7f4cls7+Pw7FBJNcyN/NPifDLOE8wwUcHkNCcJwyv6naMZRvgalejOrBSV4ulDFKEoxf71yUpyfKkf0l4d5jm+NyzEcRV89qzxn9q4nBYzrWlSx9N1IwqSi+aUHKnVnRjKypqpOMEott+ceCfG3xs1TR/2adF1b4k6jc+G/jF8J/j3+yP4u02LSNIto9M+DHw1sNM1HwadDuoyt5Y+OItOa90HW/H0sstxqOlagIZtMj1Cy06/T8dlHLp0syrvJqH1nCYqefYBNRlJ46dWaq8sXdVZTlTvLB2kl7s/Z2nO/2WZcPRo5hmkaWaVo0aNTC4d6SinSr4GljJVJdXKNTFVVzS62ablHmPz21bxV8Qf2e9f/AGtPBfw78c/Em48Eal4a8WfAvUrWy0+Txp4kvfgx4T+Fz32laVeW8k0ENpdWvjbXp7DXPi1d29x4l03wdf6jY3GpO12bsfb5fhsDnOBy3F/2LhaGMjXw2dYfE86ioZtOuqMqbrc1o1K3M6dDDX5KGKcY04Qakn5OYZhjMTXy/GY7NMRVlh8vqYOlFqUnUwFPHxwqhC6d3yS52735dXqtOI0fxX8VtP8ABH7Smk6D4x8Y2XgW80T4J/FrwroPxG8LzR30dt8KL6603wb4v0S/kvIvtWtaVr9lr2leL9eU3L+MNHnXw14ig8u306+O0MFgF/ZGGq4HBVPrFLH4fH1MPODp1IY/EVp4mi4K/soSlhozoQa/j0qsoXblI7MfjMfSzTLMbLH1avE2S0MJ9bnUg1Kk8KsVVw0Yyet44aqoVFpzRqwumo3PItJ8FaT4B+Jtt8KvEej+GNQ0m91n4TfHf4j+LdRuPHWi6rZ3PxG1qP4gv8P/AATBpOpSad4Vi0TVfE2tWWmPrF3e3stmNQubdNN1G3fVG9+nSr4zLs1xWEpVamFwuCq5bgJzUfZPD5dlTy2WOcm1KVfG4bCwoyjpeLiuZr3X85i8dGONyzHzqwhmlSUsww1C7cnHPM8xmIlg4Jt/usFLFSxEN0pW1uj+9j/gj78DPB/wc/YO+Aeq+H9A1PQNZ+JPw38L+JvE1nqWu69qsVuslxreo6FaaVYatqV7Z+HtOgstakm/szw/FZaJJd3lzf29ijzuT+4cF4KOB4ey6tUoOGKzHC0cRmMmrOeNlDllGSta8U2ndczfxycm2/xjj+tCrxdxBRwldVMvwma4yGAmneP1dV1GnZ9pRhzJXdndXSZ9x/Hb4KeD/wBor4UeJ/g18QLrxFaeDfF8ugL4kj8Kaw2havqulaL4n0vxFPoEmqx29zPbaP4j/smPRvEUdp5N7d6BealZWd9Z3cyXqfVYjC0sVhquGxKdahVjyTjr8F2oppLa6aV+yW7kz5bL8fiMrx8Mwy+Xs6+Akq+HqW0VaXtJNxumvi1s9eZXd3v/ABj/ALan7Ka+H/2ov2r/AALp3jHxb4U+F/7OvgTRo/hb8M9Gu2sdJsPh14p8a3PxP0Lwdp1xctfaolvH4r1nxHrl3rjXsms+I9PujpOrTPpMEMLfyrx/HL+G8+z3LsvyelLDr+z8fQcleNPE18nr0KyhzNyl7lWUYRk/c/iczlJs/qLgKrj8ZkXDNatnFf23GmNzPKs7knrPk4gp0qdSry2XPLBUZSlpdx5Y7Rs/RVn+KP7QHjFfhL8Zvibq+qeCP2vv2ePgp8R/jC+hWeneFdUt/FXw++Jem+GbCDwLf6TLHd+DdAutM1HTLrW7BZL5tS13TLbWIJrU3+s2k35xh62EwNLCY/CZVQhiMlz/AOpYWDcZc9LMMFUc4yb+KydVLa65r83vHfmOSzw7zBxzSs50qdTklZrknhMa405xskk5xtd7pXTdnK/5K+H/AIz+N9E+CXirwP4j8b/FfWfhr8YPidonjz4jWXhLR5r6/XVvCnxdtfCmg6jJq1hJFa/D2NPAvhoXfl6FZ23/AAm3i7QPDzX8M0thPaXX2tPJcvlTwWInl2XKGV4SrluXxrunHD16eIw8q1SlKFuatRdevP2sJXSo86soqzVfMMyxmdV8bWx2KxeY4rL6UVSUZOtTq4bBRlhsRRe8K1GdKFSnLfnULO/NeZrn49+JfgzpfgTX/F9/cJp/xz8ZyWvhrxt4LktNQ8LR/tG6R4e/4SvT7PSo9Ttm/wCEC8QeDruHXdO0i3LWcfiTzPFmm6z9qmvLGPevQy2njMXXo5XRrRoYHCRw81UbqYj+w6rnRqLnjepjo1bQpSknJYWriqThG8lJ/wBq5v8AW8xzrDV4UsfmGGzTLuIaEXaOIeZOnScYxT1wKhGpUqRTcfrSoylKTjBvxbwV4O8Jf8JfqfwavPCOiar4U+Ed18Qvg/4e1JtR8Znxz8R/iCLrw94ftL66E1yPDt5pctr4UvtM1Tw5BbyTRqNDsp9SvNLn0/T7P3a9LOa+XU8yw8cVDMcyr5HWp0VlkPq0cJicwxkcRhYP2Um1FSalFydo3bg3GUn4uHxmBwnEEsI8TB06WFgq7lJWeX4XJ8NSjOV5KyrVqVahVf8Az7o0m3a9/wDTJ+Bnwe8KfAn4Y+Gvhv4Pt9Qg0rSLYTTf2tr2v+I9RuNVu0SXU7q61rxHqGp6xfGW5BERv72eSG2SCBXMagD+lMFgcJluHjhMFSjQwtGMadClCMYwpU4pQUYxSUYR5YR92NoptRirJn80YvEVMXXq1qsuaVSblKTSXOuao03pe9mlvfVXu1d87+0V+zf8NP2pfB+gfDr4uL4gv/BGleOPDfjnUvDOh69daFZeMLjw3Hqn9neHfFtxYoNQvPCsl7exate6bp15p15canpukP8A2kltDc200YvBYPMaE8LjqftaE5U5eyk5RhOVOo5KM7NXUv5G7TjzWTlTbe+WZpjclxccfltadDF01KnQr0+XnoOtGpTqVY3T5ZezvGMtUm9m02/4mPi78E/GngH4tftK+PoPid4vttT/AGZPjf8ADD4efDDwrItpDoul2fwk8TRaP8E4ZNMMcryaL4A8I3GkC40BriS08R3Njb+IPEDy6g9xI/8AIfGryjK+IMTw7g8mpzUqHEtXGSqe+ll2LxeYY/G4ek3FtvGU6sqTq6ywinOhTUVCaX9a8GUMXi8oyPB/Xo1MHnmSYbF1YJ/HnGDwrw8q/Lzb1HRs+rm1rzK7998d6b43+Kl7+0n8JPip8TPEt74K0q0+F37aWn3ehJYeHvECfGTUPgnpWt3lvbX1hI6Q+BNP8QaKLjw74Fvbe8trS326bf3uo6cYYR8hhsThMNCrmOHyWg69allvDTikqieRY7FOMaN2nzqjKEYwxiXNQlKLVRN8xx/UcVleHyzN8LiHQxFXMs5xtOvCcnUpYjLFSp8qv704uFVyrQd3Wiowmp3sflFovxs+IOn/AAO+E3ww8T+Lvivrfg9vFOg/HLS4fDHh2fUNMtPjN4y8M/FTWNYm1XXVumh06wufEy+GptP+FtmLbw+dO1jxxrD2wivi8f6JLJMrxWZZri1gsJhJPD4PKqrqTpxksuw0I4Wfs+VOc8TCFGq3mz5qrlKNNVm4RSzo5lmGX5tPMMLjsVisbWp1s0q+yjN3xeLwVGUZcj92OHV21lfwS96UqVmx974O+Mfxg+F/wE+CPjvx1eXNjNF8Qf2btcfxV4Rmt/FvhPwzqfjK98TeLdA1SzOq2skX/CIeJfJ1H4eCdIo/COmW8mi282p+H71Hflo4nL8FiMwzCnQUa8MdRzChGMm6SdTAYqthHCMrpxxuG58Li93ONWpjJuNSk6iIV6ksbm1HJ5rNcBispWBxWOxNOM8V/t2YYPCZnUq4Sf8Au8sDV5a9GooQlBUKWDi+Sag839j3wx4S+O/xw+EnhvWfAmlW1lq3j74V/DL4e2Gi+IPiJD4v1h7f4+aBceLfGOu3099aw3oe31H+27LUPDy2F9o+tQ6ldrd3XiDS4PEkn1+X5bWxmIy3C1niFgs1zzA0cZha0LUqk8dga9aHJ8UZ0qMaE6bcnLSpFtLnaPnsRjcNgI8Q16GLp1KeCyPFY2rShV9pfE4WrQwVpSUm+enCVKrTTek61SlFXg2f6Ufw98D+Hfhr4N0PwF4Ttrm18O+GLMabpEF9qeo6vfC2WaaZpL7VtVubvUdSu7ieWSe4vb65mu7iZ5JJ53lLu39C4XDU8FRoYPC0YUcHhMPh8LhaVNWhChQpKjCFvs8ip8q1u1FOzbk3/N06kq7qTqte2qTqSnqm5SdSo1Udm7OrHlqS68zldXvf5G/bR/Yu+Ff7UXhyfxX8QrTxB4i8R/DH4Z/FGD4T6AuqXp8I6L8QNds9M1jRfiDceGLKSzk8ReLPDms+E9FPh6LUdTOi+S17aXmk3Ms8NxFw5tlGBzTDzeMwkMZLDwxFXDUami+sVMNisNzRbTtUlTrzhGdm4qbdm1E9fJc1zDLa7hgsbPALGPC4fF1qTScsNDG4fEKnK+9JVcPTq1IN2nyNNuKk3/Hv8G/DnxU+HPjX4F/tQ6P8afFur/FH4i/Gj4rpqmoeI7TTNc0jT0+JPj3RPDvjnVrnRpora21bVPGCaj4su9Htbsiz8JJFYWugotrHPHJ/F2dY7BVqua5GsipKnTeX06s7xp8+KwFSrQgpVYr3JU3h4KU+ZyqStOUlJtP+t6GBrvLs1yytm06lDLcvr53gI8knSU6tCliaUYwS5eRc/uxsoxbio2V29H456Z448Qfs1fFr/hIfiN4rl179iz4g/tAfDT9nnUI5bCO4n03U9f0BY5fiSkcLWXxDv5bLxBH4euL/AFCyt1gtdK0i+ghi8QpPq0sYKrl0M2wsaWS4aVHiSnSqZpe1NLGYaUnRUmknhakppSWFi4+3b5HCSfIcOEoY3h7GYWtgs4xCrXp4Si7y1o4r93Usno1GDaWjSeurbkfFXxG+IPxT8VeF/hz8GX8RfGHWJvhr8N/i58M/2erfSPCN14h0fT9M1D/hAdChsdS167vri8+KmpSXx8Q6ZfrqUznwnLpfgfSLFLeWx86T7OnlWCljFjIZbgcHRzHMMuxma4ecoUZyxOHeMhhp04SssP8AWIU74aUEoRSx0VZSknw8O4rFYKvOWGzTExw+Ghi8VmdRRnanlVSri8PjqM5a3cpxoT5ZNaSejtrj/E7TPiB+0Bp/wwTxv47k1fSdQ/Z18J+O9R8RXGkXkPizUdM/Ze0u61r4fJq+rDVYJIvFxW0TwT4l8ZXMUeoa3pt3D/aWnDW7K3uisC8Fh4Y3F0sFTjjKNbMsBl1GlZ06seII1aWLoxsnGWHaxU8dRSagpcyipJyRz4DFYjDU3lWBxD/srM80y7HRq2cZUamS1KWMhX3X72dLDxwlRW5uRe9f4n7l/wAExfhp4N/aT/a1/ZwsvFvgLS9Jn8YfEL4c39loXgDxP8TNC1Pwp8OfB/w3+K8smoX2oS6tpuqR6xJFY28Vn4k8PS6bbw6XPAltp1lpWo6pZ3H2eX5RiK3EXDuX4uhUng8S8yeYzrRiquIap4erUxNaMU4w+sV4YaGt5cyTjPnUD5StjsDS4V4v+qV4QjTwGCzHAxptctDNsTnFGjLCQd3d4fCPF1IpaJVHdOzUv9EPw5oum+HNC0bw7o9v9l0nw/pOm6JpNsZZZzb6ZpdpFYWEJnmd5ZjDa28UZlldpJGG6R2fc5/oGioxgqKpuHsUoRTW0YucIK7V78iTa3Sk03fU/n9upKrVqVJ3lWbnJWteTq1HzWvrdWb83s7SNutgGOu5GU+36M3ue2f169ArxUZcyvG3K13UnUjbfZ//ACXVtss3GUU9ZRnFO3WUZxXX+tNW07fiv/wWS8BFfCv7MPx8KXP9hfB/40Hw18QbnTk239n4J+MGh3ng+C6kvWkEdlpMfjOLwnZalM+VSPUYZZSltHPcL+WeL2U4rMuEaiw0PaYijO9OcVedONRSTcW4txT9kk2r2dr7Xl+i+GObYfCZvjMHi5Ww+LpRl7Ob/dzxmGc3TnZSTc4051eVK94zlq3c/BK21iDTvBupQ3Fxbtqfhz/go78N/Ek8EG37Fb6Pq+g+PpLVIchiLJxoJtrWUMqTLApBdgtfyXWw9SljsRFYWaf9g4LLVUVZXdROU6iSd/enVlUnK13zuT3vf+paGKliqWArrFXq1OD+IcZSn9Xk5UKODnj6Dwa00jWhQUWnd8s0k1eR8o+Ndd0fQv8AgoFay3st1Iseha1odrZ7LqeKa81H4SW/wz1LUJNJs4rg3p0rSdf8QXyzOHTTbSHVLgCOMvMPtKWU5lj8jlh8E+fERzLARrqjhpVMVVyzCTniHhpVVWSnShUw9KTainKapN7XfyWV18ow3DWFzbMJqnUwdTNJYeGIxXsqNLF1c2y9U6tKk6TdJrL1jpQTlJpXTbXvHNfCzx/4W0b4CfEXQYXth48sJ20Dwrot5Yzwa9baPqHwo16G0vrDR7+2i1NbTWdbsrGxe5ggFld6pHHpzXBuoxEevFZFnEszo0qmDxtChVq4eTliKM6XtHUxGInOSi5zbi1Je9dPVpJWnfnzPNcoxmcKtRxmExVKeBpqnGjVhWp0YL286dG6jFwk5S9vKO6lV5rpyd/7HP2eP+CTf7KXwd+HHjLTF8M+PJfF3xs/Zm8O/s4fGfVtS+LvxH1aa68FnRbk+IdJ8LpfeIJ7Twc9zrWp6jexX3h22tLiyd7eLTjb2UK2tf1hleSZVleHr4bB4DDUFXhRWM9nTX+0SjRlRvV5rvWFkrO6VmnzK5/LmOzjM8zxFLEY3H4jE1aEnPD1Kk/ept151uePKklKVRRqSk7uUk7trnb++/gj8GPh5+zz8I/h98EvhZo0uheAvhr4csfC3hTS7nULzVbu20uyMrK15ql/LLeahe3U0s15e3lzK01zdzzyu2WxXo4bB4XB0KOGwtCnQoUI8lCjTi4wpQTk+WCu2leTdm3q9bu8nyYnFYnGVq2IxdeeIr1589atVac6k7Jc8mktbK110uurv6pXQc6VlZfr3l1u/wCm+2v4Hf8ABW3wPJ4a/aC/ZK/aAvLeRvDGr6T4/wDgL4nuk2w2UPia52fET4X2viC7eRQmiaje6J4qtHh4Wa4ZbPzRcXVvHJ+G+M2Te1y7LuIuSVSGSynReGjGTUvrNS6lyq+nPTjPd+9GOibnf9c8Mc4qUMLnWR88aMqn1bPFiFZOUsHz5f7Jyd1aTx8Ksbrm5qbf2T8Ufh/eRR+DP2NNJW5+06jofxx/aq8GapIApH2rW/B/w70iyj8s4InmuNZSe3j3qJhMHVHG1q/math6mHhnUpqvUqYbJcPmNKpKmuZRxWMxzdGMnUjryxcZXjzcrirtRu/6JzmrOcM4rUa8aix1DKKlBxoynJOjltGhimpRumpTpKTf8zau2mz4bk8QaEf2lv2qrW5kvLseLPhR8XdGsLNYdQ1BYNM8Sw3Gv3upx6VZW9zslml8PeG7RdT2F9+paTYLIPOSOT9DoZXmc8jwlPLMPjMRDD4/LMTVw+EwvPXVGfLVcWo1tKac7KMtp80rqWp4NSvk9KWS1cfisFSq06uEeHp4yp9Wwzw0cwh9cjOMoS51Vg3Co217kmuZNa+ofDO+8N/FT4UeEfgros9rN8Qvih8S4fhHfWEcckPiTR9M8U+PPgvomi2ctpNDFqek2txY+LdU1jT3nght54jfaxZmU2srDTJeHsxwmfZTh8RhcywqxtXATxGXY3CypKpyV80+t15Nzm+aUalCM0rXtTas7t+HxFnuGr8Q8T5z9ay+bnVx+KjiMDio1YOksFhsLSi17NRsklFNO1uXRtzP7BdH/wCCTX7FOhfCH9oz4H6d4Q+IDeDP2oX8Aj4yS6j8ZPibq/ibW4vhukUfgu30rxLq/iO/1Pw3a6YEmEsGkSwJqEd3eWuome0ZIB/WGGybKMuwDy7C5fhqGAm3D6nGn+4tWfJO0W2/efxKTbtJSvzJI/maWc5ticRh8ZUzDEzxWXwhSw2JlNOtSjQqynSUZcqSUE1y6XtaLUnHmf6F+EvCuheCPC3hzwZ4a09NM8O+EtB0bwx4d02N5JI9P0LQtOtdL0qxjkkd5XS0sbO3gV5XaV1jUyMzl2PpwjGmuWCUY3i0klZOKcU0unu6ellq7s86o51FU5pOTqS55t3fNJ813J73d/0u73Oi2r6D0/LP+c9emc4prTbT0/4f+u7epKiuXlaTVldW00cvP/D+PmfzKf8ABV74ev4O/bA1/wASXVjLDon7S37MGp6ZoGpIY4LC++LXwkk1TRm0jVLyaQxxm38MeMfDetWVvsHnfYLra0oE+z+cfGvIcTLHZbnGAouVOtGlQzSUoydLmhiFSp1JWveSwrdNK6ahKWjbTf734WZ9SpZbhsFisTGE8k4gwmOwNLms3hsVz067fM9ObEyjTbWjjN680XJ/AHw88TWV78Qf2PtailE51H9k7WY2eNQVH9jftL2k8yxozoxli07w7csY2f5ACyAxxsD+D0KDtVTq4Srh/wDXPD4qEqdGpVqTwtDA1acsPVj7SCUaU5pwi7u8227x979i4g+sQjm1LEYZQxHt8JKbw1eNNUYYx1qvsYNwqJuUaNKolvb2urabf5LfDbV9Mt/hH+1NoCR6hearZ6/8PW0uygsdV1U217/wm6COO2isbW8GkobPWdZ1SVf3UV9NHfXrjfbzyH7yWV5rmMcipYPBZhUoYaeYV8RTlhZU8FVhGviVJTn7Wb92jy0oLs4xvdNvOhj8lyvNo5jjcVl1Oo8HRg508XCpivaV8np0oKnD2cf3LqWcpP4aznrfmv8Apr+yz4L+G37Wf7QP7I/wFjvpta8OeIfF+geK/iJN4W8Q3ek+Iv7F8H/Dn4geKNS0V9a0e6tte8Oy6PqejR6Te+XdWeqWEU09hA1tcLEW+n4F4cq1uK54TOsG5U6MsZKpSrRl7OpS5XSqRkrqyxPtYTk1Z3hCSkpRlzfkXEGdQo5RnmKwGI/2iXssNTxkJWqwrPFJzcXdrnlRU42s1yylok21/UPo/wDwSw/Yy0P4XfBv4PWvgTxbc+Cfgj+0Df8A7T3gyx1b4n+PdXv7r4yapqGv6nqWv+K9Y1PXLrUfFWnXd7r11O/h3VJ30aORLR4LVDbQmv6Tp5ZgKODo4Clg6MMHhnCWHw0U/Z0pQqTnGULtyi4yl7SL5r3bTbSSPxSWaZjOticRPG13XxeGngsTVc251sHUioVcPN2/hzhTgmkuaz0mpKTf6LrnHzHJ9ce7dgfTH5juGz3JaarX163ld6Pr7rt0211Zwaa/h6Xl+nL+PW5FIoOT0IHDj6tkdO4Axk4znOcGrjdyXW3R+bkn3srR9fO7uRonK11zKPO1fVR54q+vXmutNeV6tp3/AJHP+ClngZPhf+1D+2Zo11ZSWNp8V/Bnw3/aN+HkzlYrDVZLJYNF+Kd48juTc6poeqeCHP2SMbo7TXdPADAQl/5X8YcixWG4klmyoyr0swoqhS5JKCjVo05z5otq7doqMknqopzvzXf9K+FGd4atQ4Zw9X2kamRY+pl2InF8rr0MTi6+Yqo76OkoVnQi1taMH8Kcvn7UNbtrr4k/FS4jczDXv2KP2eNVkMexsq3wk1LTrwxjeh2x311DbSzOzMsiukiEHJ/IKEa9HLsRCFN0cRPibDxp1JyVW0KONw37tU1JOcFDnSgnaMrtts+9zKnRp4bLMLfEyp0cdnlaX7xRjTePlBKSk1Llc+VL4XH4kktb/kl8N/EelD9l+a2ij1DUNS0L46+EEXy9P1fVjaWFv4R8X/2zEl1a2V3FYWtjZ6foO3TJJUS2j1GKcQr9uXd+jYjJs4xWOzDGwwONxGGr0q1Cl9WwM+T2KqVOVRiq3wOrzyvdvmcm5bt7YTNuH8tzXAuOPwWDnRwqp494nGx5q2LhTlCnUq81HWpCnCEYrRWS3lzN/sd+xH8GPhN+2t+138L/AIV6nc6l4h+Gfg3wB8VfiT4n1XwF401Pw7qep3Q8IfDTR/D+py+LPCOo2er2scOofEbT4WSO+jmubuCO3vQyQ3tiPqvDnhp43Osww2fYGOKwsaMqbo4qm3TjBTvGHRwipJarVK9OMlGUk/xnirN1gchhiMsxbpYqtiaOClWoVOWbnFVa/wBak4v3pezo+xu/dftFJqU48z/pX8Jf8E2/2SPBrfseHQvA/iCOH9hy08WWn7PFte+PvGOpwaE3jEWza7qPiYahq9zJ421I3ljHqVheeI5LuTTb+SaWw8uKSWI/0S8twCjhKTwlGUcBONTBpwVsNOnGUac6VmrSjFyjFO6ipSslJuUvxuGZY+Sxsli60f7Rh7LHJT0xVONVT5aqtZxdSlCbtu0rtqLPvBUVBhBgYA79Fzjkkn9c8nk8564xjBSUUkpSnN26ynOU5y33lJuT829GtHyS96TlLVt3b87t9PPZbK7W122SqGQqwyhO2QYyDGRIrAjPQjIP1OTg5p3aaaV/eVn1i9bSWq1Xe+ib3d01ZvRa913Vqia38u/d3bbv/EL8ZPCUnwG8V+MvhBrjtp+pfAz9tM3N4bgLBCfhpr2vav4z+G17oNqZN0GiX3hnxjY3l3dn9217bRW7yxz2tzCP4v414fqZTxPmeVw9r7XF1551HFQi3zQlVrV/Y3dk4ylKUnHTWTu92f19wXnjz3AvFSrxo/2pwrjcDDD+6406+DorKaXLCzk3KrgJ14K+sqjlrexxnx/vbSPwL+3jp6uyRp+058UJbMbUZkg1Txf4ev4Wm5XbHHa+Dr+ZB5ZSSBJpSWAJr5DJcP7XE5AlTrQ9vkdTM1enH93iKVRPmblW/iVdm5PeTs29/YxNWUs1wHvwUIUKNNSWGnyLEqMk5xbbs+aDa31b6crPgTQPGvh60+Dv7L+rNcXscPhO6+IlhrHiG5ttault7XxH8QfDfjfxTrN94j+xPbtFYapq+r2d3fTXKQWU1hqcUsiLaSRR/e43IM8x2a4pVMszXGYPESy6vCtg8DJ4WFKlSxlPn0rJKMZypvsnyNNNzv59LNclwWTcaYXA4/J/bZnllHCSji8dGOKnUnjq88dCK9m2vbOnT9pHqoQV7qo3+2/7Cf7H/wAAP+CgH7Qn7RekfEPTtc1T4L/DX4Q3HgnTLf4eeOvFHgO2ur34k/FXx5ZIo1vwTqmly6pZXPhLwTO8dm11caY8F9a6sIpZrm1nH6B4TcP0casfLOcM8ylgfqCwmIxtJxqUcZQw0KNecY81lVjP2qu+ZaSaSei/HuM8+rZbluWf2XjpYWrLMMXiZLDVozXsJRnhZxcnBc1Kfvc0Ul7riua6bf8AR54c/Yh/Z08L/HH4UftC6J4R1W2+InwT+Bdn+zl8M7qXxd4lvdE8O/CyxR7azsU0K+1G4sr7XEsGk0yXxRfifXbnT5JLe7u5SFev3v6vhZYiVV0Kbr0qXs1Xcf3ipVpXnC6eik6UHJd1HXRt/kccTio4WrhPrFT6tXq061agpfup1qXtY05yVrucI1JWe3vS0dlJ/XCoqjgYP9SZCT17k5/E89Sem711ve131dk0r/L9Nb3OVpufO3d2Sv1sr2X9dLdFYdSKEIypXJGe46jknPOf8984Ia07P117/wCf5dhW83pKMv8AwGSdvR2V12trpr558VvhN8Ofjl8NvGnwh+LPhaw8afDzx/os/h7xd4W1N7qKz1bS52V2j+1WFxaahYXUE8cF5Yalpt3banpuoW9pqOm3tvfW8FwsThCrCdKrCFSnOLhKE1eLg27xeuqd+uq0aakrmlGpUw9SFWhN0qkKntIzjvzWa6t7brre120rH5ueI/8Agij+wdrNhJpmhaH8XvAdnda94M8SapF4T+OfxIuG1jV/AUV/B4PuNQn8Z6x4vnP9iW+p6lbQfZJbZ57a+uob6S4TydvyNfgDg+vFp5Jh6cnVVX2lKdeFRTTb0l7V73d7pys7cyR9TheOuLsI06WeYpqOFxGDhGccPKMMPiZVZVqcV7FWU5VZNq7jdr3W7s9B/Z9/4JU/sr/s4ftF3n7VHhK6+Knij4wz6Br3he017x54/k1jS9I0HxDO0mqWWmeG9M0fQ9FWSePbai/vbO71EW4I+1mRnkPfk/CuR5FVlWy7COnOUasLyq1ppRqyjKXKpTdmuVKL3UXJNu6t52Z8RZzm+EhgsdjHVw9OpGqoKjRipVY86VSdoXlLlnJdFZvS+p79+0P+xd+zr+1RrPwn1741eDLjxFf/AAb8X2njbwW1jrus6BCdYs9W0TW4LXxFBol3ZJ4n0Mar4f0jUJNB1oXOlTXFnF51s8b3CP62KwOGxsWsRTjOXNTlGo4x9pBU78sYzab5Lu7i79k1ds8zC4qvgpueGqOk2mmo3UdVKLdk072a5Xe6aTuz6nUbR1JPc+pyxJwOMnI/AAe9dVrSnL+bl06LlTS3be3n21buzlgnGPK5OX952u3eWrsut9lpv3YtMoKAPGfjz+z18Gv2nvhnqvwh+Ovgq18eeA9Xv9E1a50a51HW9HurbWfD2qQavoWtaRr3hvUtH1/QtW0rULeO5s9S0fU7S9QGa3adrSe6gkwxWFw+NoVMLi6NPEYepbnpVIqUGk7rS91Z6rW/maYetWwslKhVnTmo8vPGTjKUbybUrOzTbTta2ium/ePgTUv+CLv7D8uq+G9U8NWvxk8Cr4X8dTfEzTdN8M/Grxrd6fJ47nt7O0uPEN4PGNx4svbie5tdN0u2uLUXqafPHp2ntPaPPFJM/wAnjPD7hDHyxc6+UQU8bhqWErypV8VSvQpOpyRjCFZU46TknaNndNrnvN/U4XjrivBxp06Ob1vZ0qUqMKVSnRqQUJTnN6TpuTd5uzcm0mknoer/ALIv/BMj9mL9iv4j/ET4vfChviRrvxH+J3h3TfCfizxZ8RfHM3iWebw7plxptzbabp2kW2maN4f0qMz6Tp8k89npKXczW6CW5YNLn2soyDK8hpVKWUUJYP2qgqlSNavUnLkfuN+3qVUuWPuxSSXLumzxs0zrNM7jQjmuLljfq0akKDqwpJwhUnKc4pwpx0lJ3s79NW02/YfiZ+xd+zt8X/jz8Gv2kfHfg251L4o/Aud7v4e6ra69rGl6VbXyyXkun3+ueHtOurfSfE13oc99eXOhTa3bXR0u5uZp7ULLsYehWwmGxOIw2LxFKFbE4T2vsa803UiqqiqkW76xlyQko/Zkrp3bOGliK9ChXw1Go6dLEQUKsYxjqlOMr3s3e8IprZxumm3c+pFiVSSGb+Hqe6knJ4yd3GefxOTXRb3eVvmXNzK/RpyaS12V9F66tts5+XSaTa55KTt5JKy8mlr1v1dkS/5/n/n8vemNLlVrt+vz2/rq99bn6/5P+fy96Bnzz+0V+yl+z9+1l4c8NeFvj98P4vHGmeD/ABND4w8JyR+IPFfhfWfDviOPTtR0iTUdI8ReDtc0DXbMX2lapfaXqllHqI0/U9OuJLTUrW4iCAcmNwGDzGg8LjcPTxFCUoylTmrqTi5W5uvXpqlb3rpt7YfEYjC1JVMPWnTcoxi+V6WhUVSL33U1Gae6ko6uzPhmf/giv+xbb6xoOseE7745+BG8K+G/GHhbwtp/hv4x65e6doGmeNV1tvETWSeMbHxXdT3F1d69qep251K8vLex1K4NzY20XlwoPla/h5wbWcnDJcPhnJym1hZVqMPay5L1XTVRxdSXJHmk1drmTvc+nhxzxTCGIg81q1Xia+FxFapWhSq1Z1cJRxFCg+ecZWjGniKicVo24uTbir/TH7Gn7Af7O37B3h74i+H/AID2Pi4/8LT8VW/jPx5rPjjxXd+LNa1zXrSzaws5TNc29rZ6daWlqzx2+n6XY2tnGJHIiJ6/T4DLsLluFWDw0ZewiopRqS5/hVrvRJt7ybTu/PU+fzDMMXmdWnXxVRSqUqVGhCUIRjajR+GFkn8W8nu291ZHXaR+xj+zxof7Veuftnad4Nni+OuveBl+Ht74iOt6s2iQ+Hv+JXHPNp3hI3X9gadrt5a6TaWF54htbJNZm09r2za8+z3t9G9wwOEhjKuOVGH1irSjRlU5UmoRc37rSveba53KUrpRV0kY/WcR9WnhFWkqM8THFSjvepGnOnFXbb5eWTlbV87UnJta/U1dZgFADCgY5JPbjjHBbHb39emOTg5adtreT6rXW2vXrvp3JUUvaat+0jGDv9lRlJ3jro5X18u9z5X/AGkv2Jf2Yv2upfB958f/AIbnxjqngO38SWfhDXbDxZ428Ha9o2n+LINPh8S6XHq3gjxH4evL3SdZOlaXc3mj6pNeaW17p+nXwsxd20Eq+dmOU5bm0IUsywdHGU6c3OEKvPaMmmpNck4v3otxau7xbTbu2+7A5jj8tk54HGVsPN8vNOlKzlKHMlN3TXNr8W/re58c3f8AwRU/Y3bVNV1PQtf+PvhVtS8CaX8Mo7PRvi9eXtnpngXSdc0/XLHQtPXxVoXiW5ZIrjTobUX2o3N9qi6bJcWMd6kUhNfKV/Dbg2vNVHlMKbWOlmEVSq1oxjXlK8lGPM+Wm37yStLntJzbSt9DHjniiKknmc6nM6bbqQhPWnNTjuratWlfeLa3fMfY/wCyB+xl8Cf2Gfg2vwM+Aela9ZeCm8Ta34yvW8W+Ir/xZr2qeJ9fTT4tV1XUNY1QGR3nh0yyhjtoIoLO3ihVbe3TMhb7PCYXD4ChDD4SmqNKDm4xjKbs5ym5aym9+azXZR680n81jsXiMxxeKxuNqe2r4qr7WpJwglF2S5YRjFJRVrrm5pJtvms7Evwo/Yz/AGefgl8c/jb+0Z8OvB9zpHxS+Po0lPiLrkuuaxf2M9vpUrXCWnh7Q726m0rwra6hd+TfazBoVraJqt5bWE2oec1lZbJoYLC4bEVsTRpRhUrK07K0d07pJJ3bSera0VknzNxUr4irQhh6lepKnTXuJuyUrt89kkua14+UW0kmk39SKNq7ck44yevVsZ9Tz16nknJJrpSsrL+tZP8AX8uqbeX9fn/X3dhaYCEZGMkfTH+16g+ufqF64ORaX+Xys27rXT/gvrdtW1Tu1Z3067rXr1ezvru3qfDH7Q3/AATX/Yr/AGp/HOp/Ev40fCGbXPHWteGtF8Ia54n0Lx/8S/BN5rvh7w/fXF9oNlr1n4L8XaDpeuS6RNcypp+o6rYXWqW9mY9PjvhYQ29unlY/JMpzOUp4/A0MTOVKVB1JqSqeykmpRU4SjKN0370ZKSvpJPU9TL85zTKqlOpl+NrYeVKSlSUGuWD5nK6jJSWsndp6N7p3bPmDxJ/wRA/Y68VWvxGsdT8Z/tHC1+KuvjxH48ih+MCs+t3v9l6npUkQubzwpd3Wmwz2+p3Tzy6ZNbajJcuLlr/zd5b5qHhtwZTq4WrDKeX6nhnhKMFi8aoKi5RlKLSxF3zuMebVKyS5b3Z7y4/4vVKlSWc1v3NVVYT9lhvaKacmry9lqry2tfRa3u3+kHwK+AHwu/Zw+C3w/wDgD8LdFnsPhx8N9A/4RvwxpWs6hdeIb1NMa6u7yf8AtHVdYa6vdTuLu6vLq4uprqRjI8zqFWMIg+1w9JYWlChh5TpUKdONKNGMpOHLG6jdybm2lprJ3VlLmaufIVpPEV6mJrcs61Wc6k6jjFOU5ylKUtEkrtt6Ldvbd8H+zP8Asbfs/fshW3xLtvgV4Uv/AA4Piv4yPjnxtNqXiPXfENzf61HZJp2n21nPrd7ePpWh6LYILPRdB08w6Xp8LS+RbiWSaR8sNgsLg/rH1SjDD/WcRUxNX2asnVqTlOo0m3ZSk27dLuzvvpiMRXxUYRr1HONOi6EE1FcsHVqVLqytzXm1f+VQTu43PqBECAgEnIA59i3PT3H4AdK6urfV2vv0vbr5v79WYNXk5Xd3y6dFZy9Xqnqr/Ntj/wAf8/lQMKACgAoAKACgAoAKACgAoAKAGFwuc9ue3Iycnrnt06kkAZJpJ3lypP16XvJJXvu+X8Vd2uwWslHq9vPe732VtX0utdGfP1p+1L8D779pzWP2PrbxnayfHjQ/hTpvxp1LwSsU3mQfD/U/EVx4btr3+0MfY21Vb2GG7udAWQ6vb6JfaXrktsNMu4blueGLws8S8EsRSWMjQ+szwvNetToc8aftZpXUYuUoJNu7cklde8ckcdg5Yz+z1iaP11UJ4qphPaJ16WEjVVGOKqQTbjSqTlCMH8Tc0nFW5n9Ao27tjjJBIz1IHAJ9M+3HXPPRB80eazXk97Xkk+1ny3XXXyudXVp6bWbt72sk7Wbelk3f+ZLVqTH0xhQAUAFADHcIM4yecAEAnBH94gdMHk9wOvUvFW5pKKcowTd93zW0Sb2jfrv1tcluydk5SSuoq12k7Nq7S03d3fsmz5/+H37UnwM+KXxx+Ov7Ofgnxtaav8WP2dYvAU3xY8LRxSrJoMfxB0a61rw6ba8b/RdYMdramDXBpsk50HU5bXStY+z39xbwvzU8Xh6uJxWCp1YyxWEVKVegmva06daPPQqSje6jWp2qQvrytrdNnPSxuEr4rGYKjXp1cTgJUo4qhCSdWmq1KFajOUG1JRq05RlG6vq1ZtNv6AVtwyAQPU8Z5I9cds9c9cAkHPQ3ZN7tdNbvVq+22n5XVnd9K1V9tbW1vvJf+2+uvW1x9MYUAFABQAUAFABQAUAFABQAf5/n/h+o9DQH9fn/AJfl31ydZ1zSfD2j6tr+uX9rpejaHpt/rGsarf3EVrYaZpWmWtxealqN9dTOkVrZ2NrbS3NzcSsI44ElkLbUY1HPFQc5e5CLfPKVkqcEptzndq0UoXe7XMrpWZPPFRlOTUYwkozlJqKik7VJycmko0opym27JLe7u/I/2cv2jfhH+1j8FvA37QHwM8Rt4s+GnxBsry+8Oa09ldaZdMun6pfaNqVpqWlagkN9pOo6fqWn3VneWF9FHcwyxkshjZHOWHxWGxdClicJWhiaFaUlSq0m3CajOcJTi2tYxlTkm73vpq7owweLw2YYaGMwVenicLVlNYevRkp08RGnUlSnUpSvrBVITgm7NyjKydm37ipyM9u30yw9f9kH/gQGcjJ6bdO3r/kdC1Xmt1vZ6pp2b1Wl/NvV2u1pDCgAoAKACgAoAKACgAoAKACgAoA5fxbrzeFfC/ivxOmi654nfw54e1rXl8NeGNPbVPEuvPpGmXmoLoXh7TVkjbUdd1g262Gj6erq13qE9tbrIrtky2lCo0pSlT/eJJu8n73LFK1nrDZvea00V87+/Nq8lGMYWS0jPmlJ3dnrUi4xX8ut37x/mefED9sD9rLw1+3J8Qv2tbqHx78Ov2rb34w+K49R8HR6PqH/AAl3ha61PS7jwzc/AZtJuYbuSC30T4eLZ+AbSCVSttqun6fqUci6/AGH8lYLN+MF43zxCwlaVZ+xp4rJlXw7lVyWVR8tKEZVuVVajlCv7Jt4inT5uenGSaf8N4XPePqf0ksdUngsQsQo4fB4zI44zCOT4bqzlHCRglifZualOli5UVL6xGnGUqlOKi2f6H37FX7Rdh+1N+zj8O/i3Gj2ev3+kW2keOtFuEEV/ofjbS7a3j1uxvbcFhayXDSQarFBuYJa3sMe9mTJ/rlrlqV1tLng5UutC8ZNUZa/FG+rTt2dnc/umUUqlWm7OVHkjLdSjOcXKcWr6pWik9U9VfRN/VtSIKACgAoA8X/aJ+JHir4P/Az4rfE3wL8NvFXxe8a+C/A/iHXfBnwu8E6Tcaz4o8d+LLWxlTw74Z0vTbWRLiYanq01nFfywt5lnpZvb5Vc25RufEzlTw1edOk69aFOVSjRjo6lSCqcsVfT3m0rtpJNpuzbOfE1Z0aFapSozxNaFKc6WHp8qqVZxUkoxlUnCEU5cik5ySSblZ2kz/Nt+Af7Zf7TfwD/AGsB+0F4N17xtefG34ieM/GFp8aLLStGvLvWPiHFrPju28RfFrSNXsRBJDFbaZ4l0ldXsBJJElhpujy6Zpl0mly3byfyp4dZpxtPxW4lqV6VTFSxKrTznA/WKNRYTBU4VHl0Yx9tyzlgqUaVOrGi5unaWqSkn/EvhRnfiFLxr4zq4mlLG1cc60+J8vhisNWp5dQhOX9j0qMI15RqTwlKNKniHhudUk53klFyf+k58C/i74a+PHwj8C/FnwtKp0vxnoVrqL2ofzJNK1SN5LXW9FuWBJFzo+rW15p0wfDFoDKBsdM/1jG0uWsm3GcFy3Ule6lrZ63sne9vevu3r/cUueFRU5RaqOnGcotbRaa5r3av3Sd+ZO6drr16qAKACgAoAKACgAoAKACgAoAa33HyccdeeOX59e/ue/GQaWln26/e+t/L89XZ3TkoJyltHV+icr9+jXyS3eh+EX/Bwd8bvi/8LP2B9b8FfCzwR441LSPjJqq+EfjP8UPDei31z4e+FvwYt57NvFUXiXWLKUHRLv4pX2oaN8OtGRkkN/pmq+KfIAu7WDf8H4k4zNcJwhm88lw0q1evh5+0qqpGEcJho060quIc6k6cY8kIXs3rZwUZ1eWD/NfFbF8QZf4ecRVeH8LPE45YCtGrWjVoUPqmE5KqxuYSnXq04KMaSk1Hn525RhCE5ScT8BP+CG/7fPxH/Z2/aMt/gJr2peJLj9mXxZrV/L4ns201/wDhEPhx8R/FkHh6ybxDLqjwKltHriWeiaj9nhnlt0a08VXFvCLm+1SYfA/R9xmd1+E8dhcdTqVcspSVbKs0lUhKGFp+0qqvhqkVUdaFSpVbnCM4pJcsrPmufln0Wcx4gxPBOMwuZ061XKME3i8mzKValUhHDVKs41MDKEasq1Ot7eNWvy1Yx5ac4tvlmm/71ocGPgqw7Mp4I3NznvnGQc8hgeATX72ttNfdVn3Vo679Ur+rl1TP6ditL6XklJ2d05Su207vRvVevR3JKBhQAUAFABQAUAFABQAUAFABQAUAflh/wVs/bR8d/sZ/svapffBjwV428ZfHb4uXd78PvhKfB/gPxb41tvBd9Jps0+v/ABN8SQ+HdF1iK1tfBGlSm90HT9TVIvEHi2fQNKWGXTjq88fzvFOZZhlmSYzFZRleNzfMaVKSwWDwEPaVJY2pGpTpVMQlthqLlTnWcua9N7JrmXyXGmdZvkPDmY4vI8rxme51KFSGUZXl+G9tVnipKNOFWurNujRk41cRJ3tS9nHlspzX+dVrmoi3u9Qi8TXviGDxHJ4nvNN1ebWrbxBB43T4gf2rc316dRtby0Gvx+NY9ZWXU7x7y2/tM62ktzdr9sLqf4Ro4TxAfFv1qhQzOfFdLFTzqvhaUZf2lRrfWJe0qVFdz9niHf8AcqVuWUYpXUpH+aOGwXijHxBq4zDZbm/+vWDxrzyWD+pueZ1a86svb16tNxlKWHxEpSpVMM7xdCbpKPKp3/tq/wCDdn9o/wCF3xe+B/xG8Htp2t+Gf2gfDGqadD8UrbU5/E1r4f8AiTp2nxyx6B8UPCGg63Db2enXVzZalBpXjKz0eNltNThs0nkaE2yJ/evDmZYvN8lweOx+XY/KswlTjDM8uzJP63h8ZHmUqjutaWJ5XOn7zatJNtpX/wBN+EM5zPP+HsvzPPMpx2S53VoQjm2V5jhnQxWFxNPmhzO8E54eu1OWGm3Lmj7SKk1SZ/R0ORn/AD1Yf+y/nkdsn2/66rutnr0/Lvd/SBQAUAIeAT6D/wCL9/8AZH5nk0Afhf8A8Fyf21vir+z18A9O+Av7PPhD4nax8Zf2idO13R7jxp8P/h7458Tx/C34VWpSw8Za/DrHhvQdTttN8ceJlvl8LeCLdpV1GwF1rvi+ARSaJYvL8Rx/m3EOVcOYr/VbLMdmmc4p/VsLTweFeIWHjLm9pjK6s+WFGNnFPWUpe7ecIt/nHinnnFGTcH49cG5LmOdZ/j+XCYKngMK8THCRn7RVcdiNGo06ULRinrOdSPLJTjd/wRQ65aaRJoE+iatcaJrFtf8Am+DrnTtO1K61Kw1jwy8217bTILSW6J0kwSQ6tZ3EG2ax+2WV6phluxX8W8M4PjPLOL8TWyjL83xue5RiPrOaYPC0JwzCtPFylHEKTUeb2OI5n7ktLO6Tkrn+eXBWC8SMh48eO4eyDPMXxFw9iY4vO8tpYaUcx5MZJvHYXEuMbzp5jGUlTumoKpGLaanf+/8A/wCCFvx/+D/xy/Yzt5fAejax4K8f6B4juLb4z+ANZ1LxHPb2XjeOCz0268X+DbLxIkNzaeDfGqafFqlkthEthDqR1Cykf7TEzv8A3tluNqZjl1DGYzB4rLZ1adFYvD5hGdKtQxPuxdOXMklJ1ErJJaNRtJ3k/wDUHJMc81yrB5ssFjcvnmdGNeplmZKaxWXYqzeIwtWMlzR5JK0U24Xeicm3L9r69M9MKACgAoAKACgAoAKACgAoAY4/dycZ+U8HOD1HqMdPX8eCS48u8rcqave1vinvfS11rfpbdrVNNxkouKlpaU1eKfNPWS6rS7Wult7Xf8Sn/BwP+2t8SvjH8WLz9mfwt4O+KPhv9m/9nTxDYy/ETxpffDv4haZ4L+I3xrd0063nn8TXXh630KfwZ8O31KPQfC902oPpmu+PtR1TV7RroaX4UvX/AJ28b8ZxbjMB/YmS5Pm0Mpqyp4rPs49m44CUINOhQp1U7ujhqtP22KScYyqQguS6lUl/Kn0j8z46zHLa3DvDPD+dYvIKVP65xHnNDCv6jWlSqSdHB+1Ubeyw9SnHEYxNqEpwhCUJRkqkvwS+Cvxn0L4M/F/Q/F+reHNW8eeEtI1PRtK+MPw90WLxMt14o8B3d0t5caZFqehWVw+leJNPtvP1nwlext9oM7XdjsaK9uAPgPBDG8XZJmTrPKc6zPhLOpunjcRl8H9Sw9alUlShmTSVo04bVY2vKKTs0nI/Lfo4Zn4g8O5tCphMhzvN+B+I6kaeaYzL8vdbC4HExk6X1+MYwlGmqbpunjIWcatKNObi1SUj/T6/Z98Z/Dz4g/A/4W+LvhTrV5r3gDVfBfh4+FdQ1S7vbzWjpVtp0NpDaa/cagzX517TvI+w63HqBN9HqkV2l0TOJTX9jpNX1UlpyTSdp03zOFRabTjyvp5N6n9+x5be5KMof8u5xVoSp3koThprCcbShJaShJPZtv2GgYUAFABQAUAFABQAUAFABQAUANZggyc9Qox3JJHrx0zz6gZyc0AfzJf8Fmv+C1um/s/3XjD9j39kzxjaw/Hh4W0j4vfFqzmgMfwQivLYO/hTwh9o3Qal8W7+xnSWbUgk2m/D2yuILphd+MnhsrH8n8TONs44dwTy3hvKMxx+b4qk5vGUMuxmIweW4eTnCVepUpUZxqV0oRdOnG9nJXmpRcl+I+MHiRnvBuXrLeD+H8zzfiDGwdR4rD5PjcZl+WYeXPB4yvUpUJ0q2ItBKjQ5pbOVVxiry/jDvfFOiXsVxrepeL7e8fUb+R7rxFe+KUubyfXTcSahc3sniGXUGv5Nfa6J1Oa+kujqxvXa/NyZnaev4wp0eM6ecyzGjgM9hnNLGLMvaSy/Mv7Qq15ynUWIqwVDmlTmnZNtws5K/R/58Uo8d0uJYZlhss4jXEeExX9tOs8szT+1sTXnWnP63WpPDKrVw8nLl9rJKLpSkuVSTgv6Tf8Aghb+0P8Ast/Fv43+A/h18T/jL4y8G/taeF7y6vPhP4i0zx54UPgr9oDw3a2kj6v4L1PTH0a5ubDx1Ho63cPiDQTfi08aaMj+JPDctvrdtqemwf214a8cZnxVl9ShxBkmY5VnlGnT+s18Tgcbh6GPjT9z28alahThz6xtTb5rc3LdJyP9EfCHxFzrjbKvqnFXDuYZHxBgYc1ericgx2AwOY0rxh7fA4yvRhD2iko/W6EpKcpypuMZxpzZ/a5H9z+XX+8/ryOnQ8jpnJOf00/ZB1ABQBWY/vHHqAMf3vlk6DOSRzg9QSRnFSoKUneTvG0o2qXUZJyV5U29NNeqa1bTesXUJJXp/vnZ6uM4qPOr3Sd9E2k9dbWaR/IL/wAFlf8Agtxb3eqePf2M/wBjf4hPo1ppN1qHhj4/fH3QtXGn3817YyXdpr/wr+EmpRTQzaelm8clj8QPiNayRyo8d14X8G3KyJqevp+GeKvHef5fSq8PcJZDm2JzLE2p43NqGV4uWHp0n7qhSqQpT9pOfNUipRsorms3CTm/5y8bPE3ifIMJX4Y4J4azvFZlX5qGPz6nkuPq4LBUMRGUG8K6dGaxeLmoVIKpC0aEoJxlLnjN/wAqa+J9DsI9M1iz8W2WgyxzJeaFrmna7ZadPBf6fIRDfaHqS3ik3ljIFM7xyOmWa3vUlhklib+VMlhxtk+d1MXluAz6eb4Gcqrjh8vzKtXpyqSlKrHFUVQ5vq9VNxkp3Sg3KN20fw9w8vEHIOJJZlkOXcRzzzL60p150cvzetjo067kuXM8PTws6kMPiYvWhVj+9jJxVm23/XF/wQM+PX7LHx08bw2sPxU8W+Ef2x/BfhfU4fFfgG38aeFrz4c/Hf4dfu4bzxh4V0mLRjeg6VcrYal4q8FNqR1HwrrEdnrOi3V/4XneWL+4+BuMsZxXlUa2a5NmGVZ1ho06GPwuPweNwdKs7TSxGD9vRhCpHS8oxSduXmtZt/6TeGfH1fjjI6dXOeH8xyLiDBU6dHMsPjsuxmXfW6qUo/WMHWxlGisVRfvVPYRtKn7zcG4Tkv6zRzn2xz68kcc9tpz/AC7n73+vX+vM/SwoAKACgAoAKACgAoAKACgDzj4tfFj4b/A34Z+Ovi78W/Fmm+Cfh18PdAvPEnjLxXrDSjT9G0azDebPJHbxy3V1PNJ5VrZWFlDPf6hfz2unWFvNfTQwvE5xp06lSV+WEXKTUZTfLFSbahBSlJ2TtGKcm7xSbd3nUlThSqTqJypwhKc0oSm3CPO5JU4qUptqOkIqUnokm2f5+P8AwU//AOCuPjH/AIKCePv7C0jxDdfDb9mDwlq7L8O/hdda5aabfeLdSjkuYbH4jfFUw3pttS8U3kRaXw34Rae50XwRZSvFbPfeI5dU1x/488V+MuLeK5YnK8t4fz/DcO0Zc3LLKcyhVzN0ZVJVMRieWg4xwdNq6g5y0UZtJNyl/Bnjb4icb8aVcZkGTcMcSYbhDB1/be0eQZpCvns8NKblWxLeGbhl0XecaEmk42rzip04xn+a/gP4xWnwk8e6b4lsPEunwz6XcWlr4p8Jy+KrPQofF/h0Ti4vvDWsylro6bNcRNK+i66bC6vNA1F4dRt7a5tFvNPuPkPDjiTjjgrMp4rA5HnGZ5PmThHNMFRy7Mp4atSTcb0Zxw8oqpBLpa9pRlK7Pz7wj4w8ReAMzeYZRw1nWbZDm9anLMsFRyXM8dhalOnUnTc8vccP7OOMp8rhF3toqcpOSd/9Bn/gj742/ZR+Jv7Md38Qf2RPil468XeCPEHiRD4x+HPxA8R+HNa8Q/Bj4mW1jB/wk3hLUYNA0ywisr6+imsL2S+he50TxHYrpviPQ5mhvZ5H/ubKsxo5rl+GzChRxGHp4ilFrD4mjWoVqDi5QlRlSrRjUjyNRirqzjyyi2m5H+kmS5rQzzLMNm2Hw+IwtLG01WWGxeAr5disPJymp0cTg68KdSniKU1KFWTjapUU6kZShLnl+sld56gUAFABQAUAFABQAUAFABQAUAIQDwRnnP4jPP6n8+9AHiXx2+FOvfF74c658P8Awv8AEjWPhLL4iDWWseL/AAromjah4lOiTxzR6lpOm3Gp4TSW1WOTybrVLZW1KO1aaOzlgmm+1JcJygpa8ylG3L05eaSd47Ss22lJSV5S0bSTcajpTg7vk5lJ6vlunJWad0k9LqzUk+WSkpTt/Mn+0r/wQS0f4E6p4p/av+G/xp+LXxc8S6frOnXOl/BOz+Evhu+W9vfEGj2PgXUb86l4aS51+W107Td2siODT5At1Gi3M32ZZJh4OE4bwNPidcUSxVenj1hKmEnU570qmFnKbdKVGbnDmVuWMlCMow0hdJM+Ww/CWX0+N63HcsdjJZ1WwU8vnJTi6FbAupKf1WVD2fIlz8vLUjGnOEIOEbRvf7I+Bv8AwR08OeMPhv8ADX4m618Yfij8NvHOtaFoXiq80G38GeHtJ1jwZ4ikSO7FtBJfW9vrWn32lXQ3wS3Bgv4ZAjyLHLvFe5dyTfM5RjJqnfeMZTqXS11UnFN3d1dKLS5j6r2tao6s6ijT55R/cqU5KCi6vJyRdRxiuWT53CEbtxUnJJM/eH4faB4i8K+CvDvhzxX4zvviBr2j6dDYaj401TS9P0jVPEMkDSJFqOp2Gln7BHqEkAiW9ltUjiubkSXnkxtK0YRJ2NABQA0ordQD+foR6+hP59M0KybaSu9G7K7Wq33/AKW9rislfRa7u2umml27eqafm3qfM37T37PeqftE/DpvhnpnxV8QfCfw/qszp4vl8H6DoV7q3irR8fu/D1zqGpjzNO0eaUM+pw2AWfU4hHZXM4sPtdtMlNwlGSlUvGSqOEGl7WMJSbjK6bavdpKSad9JPaoynGMOSVX91WpVIqDhKMlBzcqc4VYTi4VLrma5ZpJcs09V/Mj+0B/wQ2j/AGPr7VPj58JPiR8W/wBoPXPGXirxBoI+Glr8IdHmTw1pXjC9vPFWp6zNe+Do9R1S4i0680e00yzabT7WzMV2wupHvBa7/m8p4dy3Kc7z3iLCV8c8ZxLyfWKdStN0KXsZVJSjTVoul7vuyipWldJvRt/J5Rwnk+TcU8WcUYCWYwzLixYb+1aM8W3hKEcNK9F4eEacJUlZKEeWrNvmbc3KLZ+n/wAMf+CNnh3w83gb4k+G/wBo/wCKfgbxtYW+heJ9OvNJ8J+EdP1bw3rr2kd3JBEz2yzo1pNJJZ3FreKwmg82y1CKSN5oz9NeVoxb5lFNRcrykr3vacm5JNPa9t+jsfWNtxjCT5lBWg5JSnDe/JOSc4uSupNS5mnJNtOV/wBs9AttVstG0yx1vVDrmq2en2dtqOuNYW2mNrF/BCkV1qZ0y0lktrA30qm5a0tm+zQM7RQgRKopLz18/v8A+B/krsRr0AFABQAUAFABQAUAFABQBDJFFIjiSNJAdpIdVZSVZtpKsCpKkgqSMg8j5hmhX6Oz0s+zvNJ/Kz/B6tyuJX0811feS6O/2e+1tb3b/Lz9u/8A4Jpr+3tY674f8b/tF+OfA3hC58OahoPhnwZ4X8G+D7vQvC95qdm9vqHiby9RLTa9rl2wBe71FwIbRY9PsY7a3a4eTLFUljMLUwcpyjTqRlTnJX5pUpc8ZUubmUoRajZxjKMfefMnZt82LpyzDLcwy2depQWOpSw9ecWnUlQm5KdODlFuMai0nKEoSak4yk0nf8UfAn/BG3UPgH+0n4Y/ZbsPGHxZ+Ivw58bz3fjbxT+0DN8IrDTrDQdV1jRtRZtGWTTra88KW8Fm/hnToC17qK3nn6lNvhMrWiPw8P5Jg+Gckp5Rl+JrOhRxNStQoznzzpSqVHKbdSTc5RcruMZynFQaXS78nhHh7BcF8N0eHckq4itgKFWpKhTxNRzng1WqTnXlTrLkqydSd5pOpzQTUIz5Vc/bD9l//gmpH+yj8Sbb4gfDj9o34hS2dyI7Txf4Ov8Awp4Si8M+NNHV5GSw1i3tBC8NzaPum0rV7UDUdMmdxDI1pPd2cvp21k+r1l5ybbcvWTvJ9FdJba/QXk9JyU2owjzJyekU4q8pTnKUlb3pSk5Npttvmb/UegQUAFABQAUAFABQAUAFABQAUAFADSvXnr7f/X+uCeRnjGDlRXK5O972te/u73tr1etu9vNismnGSUk+jvpvtZ99db7tXtdtvl88MRxjj6k5685465xz1otdtybk7qz1TSTeiad7O7v6iUVGLjG0W1bmtd6OWurs9/z1abQLGFbcWLHGMnH+GewwM8HJJJJya30k+X+XdXu7O7d7pN/f3BQjzc7inPlUefW9rt/zWs9Hb9W2SUygoAKACgBpUN3PHT/x7nGeevH88nNS1K6cZuLX92Lutf5k7fLy6oVldN307SlHq+0uqsu6V9dZXYIsEne2TjJGBnG7k46k5z6Zzxkmru7JK1lfpvq38u/dtvXe71u7t205Y9I25r3bblK99m7fBonFycijaCOuT7+/rk+nfPXJNIBaACgAoAKACgAoAKACgAoAKADHBH9Pr2/L/wDWSaVtGk2vNXutZarXz/4e4f1f7/8AP/h22xoQc559OMY5P59sZ468U1dRai7NpJyV7uzerTb1f+Wr1JcINpuKbXXXXffXby9Nbq4wRYGN7Y6YB/3vUn1/U9/moioxvZb27paN3dk7Xl187bajtrZWUbNcqiknq9b35vlfq/O70UIu0HPOe3XLHsPf+fJJJoV1e8nJ66vR2vKy0fROy+erbbFGMYLlhFRjror21d3u29Xr+vUdQUFABQB//9k=" alt="" />

【样例2解释】
如图是满足样例的其中两种方案,左图的方案需要种 9 棵树,右图的方案需要种 8 棵树。可以验证,最少需要种 8 棵树。

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAB4AhMDAREAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/Pj4c/8ABTD9m/4o/wDBSH9oD/glv4ZsfiRH+0b+zl8J9F+MvxCv9T8L6Ta/DCfwfrelfA3VrKPw54oi8U3WqalrAtfjx4LE9ldeGrCCOaPX0W+dbK2kuQD9B6ACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgBpOFY+g/q49fbP5c8mlyuScVJpuyUuq96a8+3fa2+40rteqX4zXn/Kvve5Hz82XIwRnJwMZYZz+BzkdATkEMale/V9pGX7uMWnG3uyk1Lfe1uXTzb0fK5PD33TdPmftFJe99pRv6215d79bLfV8eSgJO4+vr8z4x17D8sc8clOUpwUpR5W76a7KU0nqr6qKfnzPpGV9tHe2ui/VPr5d++rabb6sAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+QL9jT/AJXSP+Cun/ZgHw0/9QP/AIJZ0Af1+0AFADC6glSwBwCBkBjyRxznrt9+QAODnOb5Yttv32op/wAus4uerskrxe+6d3fUlNuUopNuCjK1m7q8tN9vd1Wt7+QiHGQSWOQPmPPVu30Az+HOSctNpRbvq+Tte3MnK3nyxl1+Jq71k1T951I8zbh799b+83JQevS9rXulZa2JKssKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAQ/db6f1b+gJ/wDr53C/rp1a6t9v+DZpuXfklbe2mjvvNd77Jeeq6pM+f/2mdN+N+sfAr4gWn7PHxM8PfCL4orpEtxoPxC8SfDuL4oWfhy1tN1zq97p3ge41/wAPafrHiP8AsyK6j8M/21eXGg2+ttYz65o2raYl3pU3jZvjJYPLsVjcMlVWAw1fM5UoyX+1UMLSq1p0aVRqUac8Q6fJCpNShFttp2u+3AUYV8ZCjU5qf1irSwsarulCVWo4Ks4ppzpxcuaVNNSaS95NNP50/wCCUPx8+K/7T3/BOH9kf4/fHHXbXxP8VPif8MYPEPjfxHYeH9J8MWWs6yfEGu2B1C38P6Jb22laTHc21nbOLTToI7RS2+Jdrbj9PmFGjh8RCFBt0qmAynEpt3anjMswmLqwbu7uFStKD2V4yUdFr5OCnKVKup/FSx+aYZNpLmjhc0x2GhNJJWU40ozirXUZxUm5JuX6Gf5/n7n0/nycHPAnd7aW0kndPW3fTZ/jqmtesKYBQAUAFABQB4v8e/j58Ov2avhj4h+LXxPfxUfDHh+TTLN7LwN4C8bfEjxnrWs61qEGlaD4f8M+BfAOgeIvFHiDWte1S5tdL0qy07TJTPf3MEMkkanzTlOtCE6VP3pTq1FTjGEZTaly1J+8oKTilTpyqycrJU1KTdlduEXP2mqj7Om6jcmknTT5XJN205uWGl/fnGN73OU/ZX/a1+B37Z3wyufit8B9f1rVtA0rxd4o+H3irR/Ffg/xX4B8eeBfiF4O1Aad4q8CfEDwB410nRPFXgzxVodw0JvdF13S7a7WC4trhVaGVXPROnOnGhOSjKniaTrYetSnCtQqU4ydOdq1KUqaq06kXSrUHL2tGqpUqsY1IyRnzWqzoTjKnWpwpVKlGouWtClXi54arOm3zRpYmmlVw1RrkrUpRqUpSg7n0nUFhQAUAFABQAhIHU/55Hr/ALJ//XyYlNRdnypd3KK01V7N+X59U2z+v61/ruz5P/av/bL+FX7GfhbRPGPxY8IfHjxLoWsnX3ku/gd+zz8ZPju/hzT/AA3piatrOueN4PhP4P8AFUvgrQLWxLzjXfEq2GlyCG7WO7Zre4CxOtCnKop3jTpUpVp4iSccPCnBpSlOtK0IWT5tX8KlJtRi2XTpzqKPJFylKcaUYRTc5VJuahGEUnKblyqySbvKMdXq/bPhX8WPh98bvhh8P/jL8KvEll4x+G/xP8J+H/HPgPxZpguVsPEPhPxLptvquh6xax3cFvdQxX9lc28yw3UENzEXaK4hjlR0PZVoVKFSpRrJ061OMZSpTXLNQklKM2m0+SUOWcZaxcZRak1dvmpVo1abqRu1ZWS9583tJ05RkldxdJ037W+lN8ym1ySk/RRyM+w/9m/+J/X2rH+vzX/tr/4O72W33ef8y3vr8P476XCgAoAKACgBCcAnBOOw+re/oufxA5OaP80vxavq/K/fbV3u129Yry1drt30S3bOG+InxJ8EfCT4feN/ip8SPEFh4S8A/Drwvr3jPxr4o1abydN0Hwx4c0y71XWtVvHCs/l2dlZzzeVGrzzMoht4pJ2jjbnqYmlRjOdScIwpyUKsnOP7uUlalGSv/Eqz5KdOn8cpVIWT5o3qjGeIcVShKcpytTUU25Ri5c9R2XuRgoSlJv7Kbezv5H+yP+1t8EP24/gJ4R/aU/Z31zWfEPwq8bXniew8Pax4g8K+IfB2q3F14T8T6t4S12O68OeJ7DTtZ0822t6NfW0f220iM8ca3EAeB0c92Iw9XCulGtHllVpUK0VrpTr0/aUnLTSUo6tbJ6cz3OehXp4h1lTv+4qTpSva/PTlyz0TdktGnu1JaK0j6W/p1/p3/wA+9YdWrbWs++6/C35d7vZO/wAt121kv/bfx3drhTGFABQB/IF+xp/yukf8FdP+zAPhp/6gf/BLOgD+v2gAoA8D/aX8Da58Sfgp498GeHvjd46/Z71DWNLt4n+LPw0ufCWn+OtA0yG+S41i08N6x4x0TXtI0DUdf02K50S38RLYHWdBlvV1rQLq11qzsbxfKzfFVMHlea4mLSlh8vxeJoXc7yrYfD4irZKElL/l3B6SU7XUZXevXgKdOpjcHCaUoVMXh6da9nFUnWinzpptxabbSTsrPdnwh/wQ5+Kvj/4y/wDBLr9mDx58V/id4n+LnxF1Kx+Idr4p8d+OPFDeLPG2tNpPxf8AiBoujz+KNanc3V3qEekabZ20U1zHFJJaxI6RiIrX0uPhThTyipGCprF8O8M4+a5bKWLzDIsDjMRa0pPmdWtOTUneLvGbUk7+PQc6eKzqheco4fiPP8DQcpJzlgsHnGPw2Fq6tc1OVKjTadtYyjovct+tdeedoUAFABQAUAH+f8/z/wDr0aWv0X/BXfy/Lq7s/r+tfn/wRjuEGSCevQjPBx3I6/n7E1EpWhKai5KNrqNru7kurX8t/mtXqCs3ZyUfN3s99t9bK9vPV2s3+Zutf8FQvh94O/a58C/sq/Ef9mr9rL4Z6f8AFT4m6v8ABP4S/tH+O/hXoWjfs9/Ev4waT4f1PxI3grwprH/CdXHjqaLVtK0TWpvD3i6+8BWvgnXX026/srxDPbNBdNrgI/X1JQlChXeGxOLw+FxE4xxGLoYNr606Eabq01KhDmrTjWqU26UW4OU5QgzFOOFpe3lJVKEJ4eniK9KM5U8LPFVJ0sPGu3FSvVqqnSTpqaVStSjKStUZ+mKPvLKVZSv94DkZIBGCeDgH1574NYUqntIRlKE6Upc9qdRR57QbTbUZSVtre83q01dauztzW0vJJ6a8rtfRvSW6623SJK1EFABQAUAFADWZVGT9On19/b9R6GplOMFeTtskurbbVkvlf06uzBJt2Sb11ell8Wr1v9npd+9HR6n5t/txf8FJdF/YJvrHV/iR+yh+1R8RPg5b6X4c1fx3+0N8IPDHws8R/DD4aW2veMoPB/keKdP1z4veF/iHqeo6XdXen6hfab4M8D+I7uXT9QsF01LzUZGsA8K5YnH0cvcZUJYjGZbgMNiK9lhq+KzKusPh4QlTdWolGq4QqynTSg5xa5opyLnGKwcsXSqwxEqdLMatbCUW/rNGGXUHXqup7VU6K9tTjN0LVmm4T55QSTf6N2V7BqFlZ39qXa3vba3u7cvG8UhguYVmiLxShZInMbAtHIA6HKsAysK1rUp4evWw9WyqUKtSjNKUZRc6c5058sotqSTg3dOzTi76pvChVhiKNOtT5uSpTp1Y80XGSjUgpx5o7xlZq6ezdm73LdZmnfyt+Lkl1/u/itb3CgAoAKACgAoAYzqhUHPzEKMDPJ4GeeAT3PA7nHNTKUYxcpOyVld922kr3sr2vdtK27dmCV/lbXzbsl6ve3bz0Pzj/ZY/4Kifs5/ti/tWftO/so/BnR/iNe63+zFZ6fd+I/ifq2haLZ/CT4gpP4r1zwRqr/CfxDb+Jr7U/Ftj4b8YeGvEXhbVtZfRLHRX1rRtWt9L1C9SAyHfBUZY3h+hxDBqlQr5jXy5YSspxx0J0aNOqsRUpqMqUcPXjP8AcP2zrOzc6UIuMpGKTweYf2ZWX+0LDyr1LfBTcXRToScmpOtaqpNQjKCtOLqc8ZI/R+sgCgAoAKACgA/z/T1/z655oAQ/dPP49urj+mO5+93PKbSTl0XZN9WtErvp+K1dmwX3/rv2fZfd1unf52/ae+FHwJ+OPwH8efDz9pG5ks/gvf2tpqPj3UF+KXjH4PW9jpeh6ja6st5f/EfwR4w8Ea94d06G4tIX1CSDxHY2d1Z+bZamZ9PluLZ+CphHWpRhKFuSVDESi5RcaijUqutQkoNw5Jwjyzg19XtPVXbkVQrSpSqON06PtYTbTdvZx9p7S71SjdSU01y/FdqMmfPv/BOn4J/8E8/gN8IfEPg3/gnH4k8Faz8JbvxGmr6tYeBf2iPGHx68PaJrn9nWmnR2em3niz4l/EOTwRZtZ2MEq+GtEn0nRmlM2qjS2vbu7u5fRdR1IOk5czp2itbuKVlFX0bioqMYLVRj7sbctjH2Ti3O7SlecnJJXcpznKT0TTnKbnKXxN3lJydj9ClIzgMDhR0Iz/Fg4z0OePyyc5rOC5U4Ntu1+uylJXV/lfzck3fe7qyd1aSvF3Vmtrp31Xmm/VvUzk1rRZNYn8PR6vpj67bWMWqXOiJqFo2sW+lzzPbwalPpqzm8hsZp43givJIRbyTI8SStIrCqur8t1dq6V1dq7V7Xva6tfa91e6dy62utr/K7V99rrfvdXbTb0srjORgdTkY7gd/b+fJIJI2le7S5d7vb110+b+fUa1210vprpqr6N6ad++rabYCDnBBx1wen15OP88mn0T6PZ9Gu61/X5sFqrrVa6rbRtPW/Rqz7O6bbTuv+f5+/t/Png5A/r8/Py/PXR3TI9R+Y9/f/AGT+R9CSm0t2l6/d3/X531DTXXbfyWyb10+f3t6nxt+3r4//AGlfhd+yp8WfG/7Jel/Bm8+NOl6TAnhnWf2gviHZ/Db4QeCrS6uBaav4/wDGHie+tbixktfCNjLLqtpoeoT2Njq99HbWd9qkFmLhX4cUsW1CjhFGk61ZfWMSqcZ1aWH9nV/eUPa3pSxM60aVBKSbjSqSqKE3TcXpRlCn7eVZTr0+SDhRpzjTm586Sg5yfuUo2Veb3klOjGUZTjM+Pf8AgibaPpP7K/i/StV0/wCEE3jG6+LvjPx18SviT8Kv2zPA/wC2Pf8Ax2+JvxFNj4r8f/Gz4j/EDwN8PfhzofhHxX4t8T3OqWtp8PNO0H+yPDfhnTdEsdHu2sVSJfRTwVPB5fh8DVlKhhqE6aoXm4YOCqScXOpWrTnWr42Sq4mvU2VZ1bzkpLl440a/1qticXJVcTUp0Y1MV7NUpYinCM4UKPslGPs6OX0orDYWNnahKKblNSk/2LyPUdu475A798cevPJIJM2fT+rf1/wWb3V7Jq9k7X1s7pO19nyuz8nq2m3mx63os2r3Ph+HWNMl12ys7fUbzRI9QtH1e0065lkhtb+501ZzeW9ncyxSRW91LCsEsqSRxyO6PlXV7XV7Xt1te17Xva+l++l7j8+nf7/8vz3s76WR6j8+3r1/z6mn/wAN89V38vz3abZ/X5+b7fnq7O5keo/P647n0/nycHJpe19bXt1tte1728/xb1DTXXbfy9ddP61YtK67r7/+CBGQOeepGenbd6n36Z79TWck5O0Oa63cYUpOzf8A08TSWqu0r7a6thH3XN78yt6Lq3/XzPyL/wCCwvgzxn8SP2a7fwNF+zj8PPjh8Kry41rWPif4j+JH/BQXxx+wToXwsubDR7nSPCviK/8AHngjw3qd5420W6fxDrKax4T1vVdM8MSC2tl1ex1Vri1EHm4zBTr1MVatTwrqYPEYaOMkq9Z4eriITpxrywlSp9SxEKUYqpKm4VJ3Tp8nLUk314KtClPD1EpVPZ4mhV9lBLmqQp1JVGoTj79OTateEr+8nduKPeP+CZNmugfsK/s2/De//aT+FX7Vfif4U/DPw78PPGfxk+DPiDw9rfgPW9a8O28lpBaaXP4dkSBLfRdNSy0S2mv7Ox1TUbexj1fUbCC+uriIfR53i8PmOb18fhaVTD06kaLjQvGcqc/q0aNStWftJym8RUjOpTgpTpxnN6KCk34mW0pUsFTg0pUY1atanK80nCrias4RpSk41JPDxahVVZJSSaUZOUr/AH8pXGAy8ADg9MF17nPXjnnJIJzgnjWq6vza105r7KyfddPd0PQut7q199Ertu3kr9F6drGda63ot/qGq6TY6xpl5qmhtaLremWuoWlxqGkNfQG5sV1Wyhne405r23H2i0W7jiNxBmaHfGDIUnFuyab10TTejs9L30ej89L3G04x5mmovaTTUX03en4/O+ppZHqPz/D1/wA+ueaLq9k1eydr68ruk7XvZ8rs9tHq2m2rP+vK/wDl+ers7rTATI9Rx15+uO/t/Pk4ORauy1a3S36Lb7vvWt9WLW6Wtt7dPXV2/rVkcozG4B54AwwBzl++4Y7ZGc898kVLfLGTduTRVG+b3abclKV07q0bu/br1FaMoyi5cqmvZuSesedyjeL6S093d3laz3PzD/4Kqfs8eKf2jP2cfDGhWX7Wnwt/ZQ8CfDz4t+BPi78VfEXxw+G+l/Ef4O/ETw38Pr+fXdB+HHxS0LVvij8KdPuvBNx4yt/D3iTWdLvfEy2Gvy6JYaJqdndabPeWsnDKiquJpYqooSjh4ZlQeHnKcKVZ5hltfL44ibprmq4nCUq862DceaEK6o1LrEUqc114PEezjXVODdar7NUJRTvSpUZqdaLWsbV4U5qq5e8qbnK6ipX8q/4Ib/Cv4sfB/wDYv1vwp8Vv2jf2dP2iJL74+fH/AMb+F/EX7NDeHdQ8CaHoXxA+L3jHxzJb3vibw74u8S6frGqeJdR1+78Xx6UkWnSeBdN1mx+HEh1dtB/4SS79vF4iniKeW0KUavNgcty3ATlObqVJLBYSGGpucldynKEOedRturOUpvSKk/Nw+Hjh6mYYmKlToY7F4jF01O8Y3rVH7RxbbSjdJRpJtUlu1OUon7KLtBbBHO3PPu/v3OeO3PJGK4lK8pxX2Iwv5czqPa90mo6X7Oz3ZtBJczT1k3fVbpzT03uko829nbZtt51nreiajfatpen6xpd9qOhS20OuafZ6haXN9o815b/arOLVrSGeSfTpbu2/0i2jvEiee3/fRB4/nppptpNNxaUkndp2TSaTbTas0nrZrf4nT0vfSyTd9LLWzd3onyuz20ers29LI9R+Y98d/b+fJwcjlFK7kkr2u2kr3ta7e99Lb303D07X+Xffb+rvcUYPQ5+n/wCs/wCe9P8Ar+tQ9P6XR7/r83ufyBfsaf8AK6R/wV0/7MA+Gn/qB/8ABLOgD+v2gAoA+ff2ofh7+zZ8UvgZ4+8HftdaB8NfEXwAuNPs9T+I9h8YbnSLP4aR6Zoep2+s2WpeKL3XLuy0uztdL1OytL6O5u7qJILmGCTzFcIayqU6dVLnpqt7GXtlBayjOnzTpzUUm1JcjcJW92Tbbk1pdBzhVlySkvax9lKzjH3Jc0JJuWiU4uSbeiTTdkm5fKf/AATp0L/glD4T0H4gWX/BMCX9lWz0XxFqukX/AMTNM/Zs8Q+E7tr3UtIs7m30O+8UaRouqXd7A9pZ6lcR6fcXVvHC8V1OInkLO41VZunGhKXNyXqU4K16catlKprLmk5KFKFSTXNeLi1GUeV5KlaVSo1rf2Wl3pTq1Ixcry91wfw6Wqc8qkJyi1J/pYSQCRjA6k9B94ZPOf4eR1OeoIzR/X5r9Py0bd3Ryuq+OfBmg+INC8J634v8LaP4n8Ui6Phbw1q3iHR9N8QeI1shuv20LRry+i1HWRZLte6OnW0/kK6tMUBBJZvZX6bPfWy38tt91d2bautrr7+i67/13Z1g6fgPUf3ux57D3656jIMKACgBOcHue3vz/hz/AImlZOMk3ZNa/fN/K/6vW8W2ndLRXd0u2l2m9+iSfz30ZDKuSpxkjPQnJGXIAGRzxwfqOQzNWfNUjSqRpJtKy0avbmn3evR276XvJslQpynHnav9lOSWt2tLp7O2vq02z+Xrx54++PFx/wAFnfCvir9p348/8EpvEXhj4T+PIfD37LvwI8V/tq+P/Bvxj/Z6+Hvitr/QfGXxWtvgjJ8J5fCvjb9qz4geDWvLTST4z8bWll4d02W48KeBUsrDUb3xNczlkaVCWKxNeVaOIxGHqUcZX/dVI4XBSqL6tgsPOql7NVMVGlPEOlKWIcKtSM0sN7iMfGcYQ9hy8i+r+xpV7xhia8aknUxUlGr70I05Sp4e/LTU1CVqmItf+oG3kSTZLFJHLDMnmxSq28SRtlklikUlHikDhkZWZSpBVmB31qnJKMOW6inFy5k3GKdqbkrXbqJNtrRPTdO6gnFzirwSq1eaNRNSlLnkrQuk7R5W3dNpSUXJN619Y1nSvD+l6hreu6np2jaPpNpPf6pq+r31rp2labYW6u9xe6hqF7PBa2Vrbxo0s9xcyxwxxh3klRVJNa+v+Wvn5f8AD2Zp/X6d/wBfx1K+g+I9B8VaPp3iDwvrekeJNC1a1hvdJ17QNSstX0XU7KdQ8F5p2p6fcXNnfW08ZWSGe2nkikjKukjK4os+v5PbVd9NV59Ve6bYrPZ39P8Ah3/XU26ACgAoAhlGVBwTtOcAgHPzgYPP+0e/Bxycmsal1yz5qqjGV5qnrGSlGrBKrTUZSqQ5uV8sHGUZJT5rKaCKi5xbUG4tuLnFtp8tRJwakmpPZvX3b7PU/m4/4Lu/ArWfjVZ+HE+Jun/8E1PhD8JtP8N/8I/8L/22P2s/j18UPh9+0j+zl8UPFGs28/iHxp+z34Q8NeCItG8Q+JvCi6J4S8TeFLKL4kaPcarrumxR+IxYaBaTXUmGDp0MBmeDx9pYbEyx2USeIwEI/Xa9HAZhTxMcLUneovq1X97h6kpRdKnhq1edWUOb2i0lVlVy6vgpqeJw8Fj6lXC4pr6pSeKw6o1K0Xb32qdD4EnKcqVKnBTm2j92/wBnLx78P/iH8FvhzrXw2+N3hr9oTw/Z+EPDOhSfGDwv4l0DxTZ+OdT0jQ7Cy1HxJqGp+HdQv9Oh1jW7iNtU1SzEyyW95czQvEjrtr1cTUhWxGJqwpqlGpXrTjTjblpqVaq1SXKlG0FJRXKuXRWSVr8GEpOnRpR5lJU6NGHMlJOfLBRU3GUpTi5crupvmtZSblFyftzvsxwxzn7qljwG7A5ycL6jBJJGCa5IRacr9fx9567vp3116u51+X+fdpdfL131dm3y+jeOfBviLWvEfhvQPF/hfXPEHhGa3t/FegaN4h0fU9b8M3N3GZrK38RaVY31xe6JPd24E9vFqUNu80LLLEHQM1aWfZ/c/Pz8vz1dnc0ezvt+tuvW2nz1dnfrByPy9/73/wAT+p/unKAKACgAoA8a/aD8A6r8VfgZ8X/hpovxN1z4N6l47+HPjLwnafFrwymnt4j+HEmu6Hf6Y3jXQzqk0FhHqXh6K5k1Gznu5oYre4hiuTMjRBxwZhgqOY4PF4HFK+FxWHnRxKduSdKU050p6pqNSEZxk1JNQc7SjL31rh66w2Io12qclRl7VRqfCnGNRKq9Je7Bu7VtVzK+p/Np/wAEmP2ZPC/wN/4KI65c/C3/AIK//s5ftY/C/wCHP7JXw6/Zf0z4JeBNH/Z08NfFi+g+HXi/4h6lYeHtd8M/DbS4IIfDvw/vtck8WwfEXwxrereL/H3i7XPEtr8S3a0tdO1G59uGY82FzLCTgo1cxzapnEUuaEZ1ZYPCYKvilFt7UcE6EaMUoRgnXc29DjxNKVXFZXXjGUHl+XSwdWcnKcq9KricZVjQbqVZpr2tSGJnWbdRTowoQXK6kn/Vdk89Mg4zg4xzzyfQevpyc88Wvpp+Ov8AkvW9tLNm5y/iXxv4N8Ftow8YeMPC/hT/AISHVLfQvD48TeINI0Ntc126LC00XRhql9a/2nqtyEYwadZ+deTZAihYg01d30ejSXnrJd/7t13TW+orpdV/Xz/rzOpHIycdB06fxe59Bznnn0NH9fmu/l+et022LQAUAQuwUnJYfKOQAT98jAyep4/oSSaFCUlyxtZtXu7fD7R31T2/OUdbJ3lXnN0YtqUoqfNbRJSmu71307X30Pi79sr9t34Z/sd+FtDj1fTNW+JHxg+IlzJpPwZ+A/g2S2fx58SNdjSXLR+fILbw14T0vb9o8TeNdbMOh6JYJcXE0000Qtz4efcR5Xw1g6mKzDE0qSp05TjBv3pKPOm2v5b6K6besUnJNnt5Dw/jeIcX9TpXoUqUv9pxbclCEFJpyvF8zk0vdiu65pRTP5E/ilZftG/8Fe/2j/Dvh79pj4pXnif4LWvjLwbpVx8FPhlquraZ+zV4Vsda1u8uruHSNIRoZ/ivq7+G9C8TSW3xR8djUZ7nR9N1rxf4a0LQfCGqeG7Sb+deKfGDN6mDzHDZRVnlKnSrxwlSDcKlWthYVK2GhdTahXpVKkJVMOpypYtSpUK1b2alI/cct8OMrybBYHF5jTWMzTGUKGOqYWSckslq1asK9RJ39/NqdLEYalTS/czoympuUz45+DfwpsvgH8d/HX7TnwX8YeLPgX4e8S/FBtAtPH3wphutLu/hdr+o6frmp+H/ABRdaNpRj07xb4KvtM8P6/p3i/4bazp13aeJfDPhzURpKN4uTQmThp+IvEOHp4bDOfJj8DhMG8S5VZez5cY4QioXX+82xMatKj7tJVeWMqqi5SPoq/h9lVWrh50MFCpLMqU8Q8DyRivqeEVani0klaMMPg8JVrqtG9SHK5U05Qu/2X+L/wDwWh/a/wDDfwl1v9n7xp4Q07wV+0LdNofw/wBG+Ovw4NtqmneMvFHjSJLbwDfaFpyW0mieEY/iBY3thrfw98caW974d8fXusaDoeg2HhPWU8QWmn/bLxWxWPymeGwkeTNMM68cfioJ1HHAYOo6NfFYeDUnVxlOapvNsPBQpYLEyqUcNVxNKmsW/j6PhJlEq2NzvD42rU4bTtSVpRq4KrWqTng8JXTm3GlWoKpUw01JVK9KHtcTThW5qZ+MFt4B1b9m/wD4KFeOfi+fHPxX8V+PfgP4p8P+BvG3jFviN4ru/if460LSvDfhjTfjvqZ8a3GpSa5qHjVvH1z4q8XeAtRu5pbGxuINM0HUdKn8IPe6FJ8vDj/ifH5HLG16rlVxFCeLw2NdT95hKknUeTV4uMV/sOHtNVsLpCcefnjPmm37K8PMsq4XCY3C4KOJeYYvF4b3oLXBNYeOEkrpu03Vqyi917zi3Zn91n7G37Rd78YfDaeGPF/ibSPG3iOy8L6F448FfFLQbG30/Q/jT8IvEYU6B8QbfSbTFjofirTpZIdD+I3h2yC2FjrrWGtaRbWmh67pul23614ecdUOLsuxOExShT4iy1Rp5/lco8soSb5YYhU+WyjOnKnJrlTTbhd8ik/xPirhrEZDj50YqUcFVkpYWsm5RmoOXtaTm2nK0lK3Nq4ShJpyTR9vwKF8zHcj+EL2HofT8evJIIr9KhFxpqPPzx1cP7sHJtR8lFWUV0Xm2fKQXxyXuxlL3aaVlDllOMmkm1+8kpVL7tybbbQ9yVjkYZO1SeBk8FxwM8k4OAT6c5LE3FJtJ7XS695rom/s9m9uqbZKcacJzlCVSME24QScppOd4xTaTcraJtau195P4d/bL/bk+G/7Hvhrw/Z3uk6n8Tvjb8RZLvTvg78BfCE9lF408eanbRTtc6le3FzKLPwf4G0RIZLrxR471xotD0XT4L25aWWS3nRfA4h4hyzhvCTr5jWhJyvKhT0lJtN2lq00lLeSbnJyahCbjZ+xkPD+PzzEKnQUYwg6bxeNakqFKFaVSFGnUtBvnrz5aOGg171dwUpQg3UX8j/j/Q/2hv8Agr5+0x4Z0v8Aal+KV/42+DVn448G6fN8GPh3qGsaV+zR4XsNR1O9129g8NeGGaK5+JGpS+GPDWvvB8S/Hqapq93oMB8Safo+g+F/E3hmwr+fOJvFzOIwl9QmqTnaVGjTai+WWJlRp4mcl73sKKna95T9tGNoqS5l+7YHw3yvJsBOhmFNyzfE0Juoqq/d/UIKpjOVwlLkjiaroUXTikk4OH7xK8n8dfAn4Yj9n740+Lv2mvgv448V/AXRfG3xLl0ey+IXwxiudOX4XeJ9R8OnxFouuavoemqNM8YfDvV7HT9fsfHXw+1fTbuPVfC/h7VdT0GOTxTp9mh87AeIHEODoUIxxNSpiMNiKsXz1FfE0sJiJxxHteabjUw9CcqcsNTnL2cXVmuWKfvfQYvgHIKzwdeWCdbD4zI8tzGnhX+7xlalisLSq4+k68YyqUcVUqSw7w9enKVVQjUSnGV7/sz8aP8Agsz+2JYfCrVf2bfFPg23+G/7R+pXmhfC/S/jT8Nng1K08W+NPGcUdt4Nu9DhS3m0XwU3jOzvtM8Q+AfFmkzanoPxJfW9Ah8I/wDCMXMPiHTbP7Kfi3isflTweX1KP9pxpxxeJxFNSlCrlk1KUauBgoa1HGjiKeLb9jVwMIxxFGNWp7x8dQ8I8JQxNTNJV6mJ4enKFCniHD2dTC46NX3svzGKnKVJzi6UME41KlKrWrVVU9m05v8AGPQ/Bd5+zN/wUK+IfxmtvHXxY1/xR8FfHNj8O/GfjSL4heKrr4neMvB+iaL4E8N/GLxG3jG9vptZ1jx3H8SdR8ReP/BN5q73OnNibw5rOk33hC7udDk+afHvFGLwLo4evKjjJZdGtg1CShKtmMM6qzw8ZSSV8JUw8Y0qsLSjKo3KdOUlzP2Y+HORzy2Ob0aMaWCxGb4nDxpOL/3LD5PVk4JKWilj6Dkk2tZJRldyv/dr+x9+0VqHxe8NP4a8YeINF8XeK9L8O6B4x8M/Enw3Yxab4a+NPwk8TRmTwr8T9K0y3nmttF1llB0vx74dspH0/S/EQi1LR0h8Pa1otlF+veH/ABnDjvJakqiWB4hyqtDBZ5l7lb6vmGHlVoVKlNJq2HxU4VatC0YtQfK4Rkkl+IcTcO4nh/FQfJJYPFxdbDJqTlCFRqoqcuZXU4wlT5W/eqK802+ecvtFdpJwOpQg46gMw789APU9Mkkkn9ElFU5RqS1qS5aTa85NdXt7zforq+7+ajZRcotWnv56ta3fW7feztqSM4XqGI7kDOAA3OM5I+XnGTyOCM4bjG92l01fldrr6v79N2Rd3cUtej+bX+W/nu9T4M/ba/bt+H37IWiaLoVrol38Vfj18Q7e9Hwj+BPh3UbKw1rxKdPgubjUvFni/XLxv7P+Hvww8LW1tPqnjLx9r23TtK0m1vp7ZJ57e4VfneIuJ8q4XwcsZj8TToyUeeEW3G6TnCM6jV37LmcadkpSdSpSik03KP0XD3DOa8Q1ascFTcadCUI18TquZycnHD0uVN+1mlz68vuRqc0mlBS/kz1Twz8bf+Cqf7TXhvxn+2J8Vbv4kfCDwV460bXrP4X+HTq2i/s3+HNP8JQXPxM1bS/h/wCAZpY21u5uPDvh23+2+PvHw1Lx/d+E9S8N6vcQ6VaeJW8NQfz1xV4v5zicPiv7Lvl/t/a4PCYaSh9Y+uTU4RdRpyaq4bX20E3T5qjjGdRRVv2zBeHGWcP0sujmFp5hjKmExk05OLwWEozV3C1uSpjJVIOlFWlTdN2nd6/Hn7IPw68T/steMLf43fA74l6v+z3c/E3xlqWmaD8R/DckmmeB/CPxIt/C3gTxXqHh/wCJnhiOB9A8R/BzxZpPijQf+EqsNY0i+uvDbnVPiDosLx+H9b0u5yp+Imf4SpSoYKvz4vLcDTr1I1LyjWyzEuvQ9nVjLn5sbRlTrSwalzyjUeFUasUlI9zMfD3Ja2Ix9GjhFSwrccZisNTXIudpqVHDcvLy06EaUMViJR5Pcq1Hyyk5X/ZP43f8FZ/2wfjV4Q0v9jFPCmr/ALOf7SPxB8baL8BtQ+IPgG6mtr7UvFOp3MNn4nbSdSdLofCrXtN025j1fT7fTb/U4/Emh3MvxK8F+MIvCemtplx9TjvFPMMzyyP9hx9jKOCjiswm6iVaVZVHGlLApNtYD3YwxuJjyYmlmU55e6FTDzeIPmML4SZfgcVVzDMq9TE8NYqLWWVIpqVbloz9thsQ1KMaOMo4mNdUqTlKFTK6bxU6yrJYV/j7+ysNJ/ZU/bW+IP7QXhn4lfEfwroUvxJ8bfDvxz4+07xTrWp+Kbb4X6d4vvPC3w0+LmotrF5qEHjfUvD8+l6Z438e6Z4ubXbLxv4X13xRoesW9zd3mn6pB87Lj7irEZdLEYGrClmOCq5fjask+WGKxE4YipiMLKmlKM8PiqiXMmrSdOg3QVRyPUxPhtg3lGTYqrCMYZlSz3CQwkXKPsll2Iw1HJ1FuN3CWHqVvZYjl9rXinVqQUrp/wB6n7Mnxm1r4t+Eb2x8bQaNb/EnwPdadpPjGTw2Jj4T8VWWo2S6j4X+JXgk3E08y+EvHmlZv7KwnuLm40LV4db8M3N3dS6WNTm/dOCOL8r42yalnWATpYlv2GPw0pR9rg8RGDlKhWvJz9nJSvRvo5Tn7vMm3+EcR5HiOH80xGXz5lHlpzoVGkn7P2lRVabdmvaU+WUJxg2lpzSerf1BX2Z4RE2Pm+71XqoOcCT1HJxjHXGG5weSPJGV2nzSVm11UZabNO3f8WQ1J83snyzi05vRc0fetrq9ErpPq3ukz4G/bf8A29vAP7IOj6R4X0zQpfiv+0H49stTufhV8D9F1S00y71Kz02C4n1fx98QfEdyWsfhx8KPCFrbz6r4w8c60v2e1020vPsFvdzwXBi+c4j4jyzhzL8VWzCvGTlSVONDmvKbkq0YrlUlLlk3ZRV53doJvU+hyHhzH55Uc8PRlTwdH3sVXdPmjGzbbpp/FWio3ha0Yvl5pptM/k2uvCPxo/4KkftLaJ8Sv2zvirqfxQ+EvgLxhF4ns/htpEepaF+zx4b0/wAC6Rc/EzVdJ+HHw1mli+1u2kaTog1bxp45OrfEO78Oa94Mudbk0628Ral4Wg/nXibxczHFOhh8qqQoUrYVPkUYOSx2NlllKq+WPMqTnVdGENniFO692M3+50vDbJsiy/CQzKnGpnuaU41oTneUMDlbqz5YVOZvlzHFVqNSDag3HDVsPGNZJzg/kn9jT4e+Mv2UfEmkfGH4EfE7Vv2frv4o+JtS0/wv8QNFlfTvh7oHxJ07w94A8S654N+Knhowv4b8RfCDxha+NfDsOtrrGk3t34OvJ7n4haUs9nofiuxkjD+IXENGU62Fxzq1cvxCpywyjGdSosL7bBSpulOry4hws+b2iXIlpJyVPm9rNfDnJaU83w86HPQoYDJsbTy3nlTToV8vw31mdOcFOWBqPE14VZzw8ZSxE3NVmuerKX7FfGn/AIKv/tc/tDeGfDv7Fdn4b139mf8AaC+JPjzSvgZrPjz4e3d1Zatda1cXsNl44m0nWm+03Hws8TaBpskuoQ6Lp15qMuraCL74k+E/GT+E7axsrj6rHeK2aV8meMwOFpYTH4Gh7bHxbjUjXqU+ZYZQ9pF1amAxFSM4RxLhGopShCVGEp8r+SwfhPlOBxs8fjswli8pnCtVy2s6aj7fGYRxljsvxcU+WniYc9FVqcZzp2k2qlbldQ/IL9ju50r9lb9szx1+0B4V+JXj3wJ4f1z4i+MfAvjfx1YeJdX1XWdH8AW/jXxNoHwi+KuqRazeX1p45/4R2Lw9Y+IfifpPi2TWrXxv4P8AFGt2epD+0YtK1i38Ov4h8S0MNHF4WU8RjqcsOoUptqpLNak3LF0sVSUpRxMMVQnSw+Dc4yUa3K6dOm7s9St4dZd/ZuVYlYONaOKy3ESxdad1zV4VMbKpRlJRcoPCYaNPERmryi5p8smoJ/3t/s0/GTVvi14O1G08bWek6d8S/At5a+H/AB7b6A8z+F9Zlns0vdB8feC3nnuLg+DfHmmOmsaPb3Ms13pN2uq+Gry8u7nSpdRm/beDuLcr40yOOOwM4ValKpHDZthtHPAZlFN1ouLuvdqLmg01dT5krpo/Bs9yXF5JmNXB1ouMLyqYOafu1sI5TUOiakkrTi7uM4yTdmpH0lGNqkA55PYAjk9gT6fqDjJr7OClGKjKXO4pJS1vJK9m7vdqzfrHdrXxIO6erer0f2VeVoLsoJRSS0V3a1mfyC/saf8AK6R/wV0/7MA+Gn/qB/8ABLOqKP6+24R+cfKecdP9bzjPuvH05OTTSu0l3S/GSXfs/lbewrJpppyTsmo3UnrNWTTum9l211fvM+Ev21P27Ph5+xvoHh/TZtJ1b4rfHL4kPPp3wZ/Z/wDCE9nF4z8dajEt0ZtY1G6uZRaeDvAujC2luvEfjbWvL0rTLG3u5t8zWl55fzfEPEWT8N4apisxxUaXLS9rGm5tJ0XN0+eTbUlD6xKKlVV6ilKNKMXBu/t5Fw9mOezrQwsVOFBqc8U240qabXLSajG06snJKzTVk25W5WfyD/FbQf2iP+Cu37SGh6V+038Vb34gfDeLxX4Q0OL4SfD++1jTv2ZfA9t4q8RNbT/8Id4Vd1l8darPoGi+I30n4reOI9U8QXWh6R4g8faVY6L4SvfCunv/AD5xJ4tZ3UwmMWFvgXh6dasnTfsalaOE9pXpxqVIxvyTnHllDnaTajJuLd/3LLvDrBZHlCxWMhCvmOKwdGtWo1aftfqOBre1h9clSlGSbxcVVhSTjaM6S9nJSvJ/KGl/AXwf8Nf2kvir+0v8Lz4s+H3h7T/ihZeGX8QfB8S+HvH3w6ln8V/Erw/4N8deANS0iS0hGpaEfCUPhtfCN6f7D8a2UUfgDVy154h0We183B8ccQ0qeBTzCUKlfKJZlOtPEVEo/WK1DEqlUm026a9vK0Je5zLmStFn1GJ4Ky+rPCOODwntsRgHUyycMJh3RxuLwMqOCjl06PIqdWriVz1oykpzSpzt8Urftzq//Bav9qL9n74Sa78MPjvY+GvE/iTTfCtjq3hr9rbwrHC+l+KPA3iGGQfDz4hz+G4LBdHtfDPjGGQ3d78WDGLDwRcaZ4k8K+N/BA8fWdnNdfb5d4t5nmmAqYDB5cq2c808FDGtqlSq4ilB18UpUIwcKWZYHCzli6mApwnTnhlh60KslU5X8VV8I8vr4qrmeGxqw2VUJxjmWWTnOdfLaqm43decnOrlmJl7PD4LH1JRr1cfKvhJUI06ca7/AAc/aK+AHjPXP2kfhT4s+IXjDxn4t/aItfhh8P8A49al44+Jes634i8QWnx2+KvjZfFHhnRtYuNTvJNS07wXovg7Xvh54S1TwTot1ZafpdiniWz8OGC9uf7Sf5fL/ELG5hQxjxGLzDE4aOIxOV5r7LE1aOKr4PLatbD4mrlkqVWMsJXxbc69PEUJ066lKm/aqUbHtYfw8ynEYLHxVKjh8HRqYeGBxU6cJVZ4pvExc61STcpU6E6HLWoOc6d24Si1Fn9lf/BNr9sq7+JHgn4VaZrPiTVPFPw4+KemNYfDHX/E19Nqvj34W/E/QtMN54w/Zt+KWvyzTXHiWXTIIbvUvhf421iT/hIta0C1l0jxJeatetoWv3v3vhj4j4vPcXj+HuJ1Tp5ph6koZVjoqNOlnGXyhGpSq0IqFKNSpSipUalSMJOdSjXlKtOopuX5VxpwX/YlJY3A88oUa8YY+g05KhOUHOlZ3lKMakZc7UrOLcYqCptTf7IDk4DHpxz7uAOv+zjr1zwSTj9khTlSpOkpyk5TVpNty5W5Ldtu1tXr/K07H50lz3lZrl6JW15rPS+3f03tu5eQck9cg55PLjpk4HHTnv6AnVL2d2lzNqKs22npO1rvS/Kr+ba13IX71S3UU91o3aU49rbp3vfSyvf3pcr428a+Efhz4P8AEnjzx34l0jwl4Q8J6Xda14k8Ta7fxWOkaNpVkkktxe311OyxpGgUKiZaWeVo7eBJLiSON8qtf6tRq18VKnSpRV3Vk4qFNNuClJysoxjJXfWz0UpWT1w1GWJqwo4WMqtec4UqdOKlJzlOTSildvmkn7uj96Su01d/yVf8FDf+Co37Rn7VOh/8Kw/ZW8QeNv2ePgh8Q3i0fwh4w8LibR/2nv2gtE1XWJfDMPiXwnLIwu/g58LvE+sSjwz8P7+y+zfEX4ka891LpGraF4S0jxJfn8b4k8U6WX1KuEySCxLi8RzYibtCFfC1HH9/yyqqnl+Iv7api43q0KapJUJKc4r9r4U8I6mbSm82rzwtHCUI4vNMVBNww1C7ksHg7qn9azGUOZVKFWVKnCrSqQjWmlKqfkN8aP8Agmt8K/DXwk/Z68CDSdNsfif8aPiX4w+Jeo+MGiTWtQkk8P8AxF+F3wq8M6rda3qsct5rtnHHPqmpDVr69uYfEFtr03iq/R31fUbZvySh4h5nic3eLhjcdWw9DGYvLp0quJqulUrywNXGSqToqo6fMp1uaMuXmSjBrlUYH3WWcI5bm2U8QY2nl+BhiKNPL/Z0lhqVT6vldHMMNCfsnOleDcYTqpxSSnUmvaOalI/RH9i79t39pr9iHwFNf+B31D4o/B/wHqEPgz4yfsufEDX7qwj+DnittSutB0jxJ8L/ABjq1vqOtfDz4X+OPENlqnheC0vI7/wl8M/iXa3vgDxXpdroN34U8T232nDXitjsJi6lLNadSvlmGeDddqpHEYtYeMqka1bCqajLEYmnTp89LD1alOlio8n71K7fkZp4X4PP62LpYGrTwmJr4aH9g13CVHDYyriFUWV4PF1abfs51nKEMZiUquKptupGNaUJt/P37f37TXxL/wCCj/w5/aY+Kvibxb440n4XfAzwt4b+G3hn4MrPrfhrwPovx9+KPiKGwm/4S7wG0pi8U6z4T8C6Z4tvvDl14vN/JNBfeEPH+lQWcGrW+nWeWM8Tc/xWeU7ezjgp1pTp0MPKosNLIoRqP62sWqVOcpTxlOjRrV0vb0MT7XLVJ0IKcuTL/DbLMDWwuSTk3xRjprC05Y6EZ0sJWhyTxGXTwVSdSlLE1aUZYzD4l0nU+oVKE+aHO4H0F/wRt+JPi39lS88QfAL4Ta7crLpUuteP/hn8KNd1OdvBvxp8AWPiTxLpnxM+EkNvcXf2Pwz8VPBfiHwz4n8VfB/xpoUFtdyeEruHwp48XXPCumM9nx4fxUzLJcZl+b4qniKuQ46ODpZ/HEVZTq5dTqznSw+OjCc5eydf2r9qlVgpzpJuU5T5Q4k8N8LLE51l+CjDDV8ozLH4fCOlDlh7Km4pRxDjG9SL5XySqRl7Pnb5lFzm/wCzL4deOfDfxM8FeGvH/hC7mvfDni3SLTWdKmuUkgu0iuQ/m2d9aSu8tlqWm3CS6fqmny4lsNRgurGUCWGQD+msHiKOOw+Hx9CoqlHE4XD1cLKEvclha1NVKU2k7SlOHJLmfNJNy99tyP5+lQ+qyrYZ83PRr1oVOZydqirVFUSlP3nFTUlBbKFlFciR29dRBXZyNy5OcnHPUBpOgJ5wOqjqCvB6nKTqqrCFON4Stzy/lvKSfRrXm0u+/VNuYrSXtWk42lGWtmrztt9pJRvo/Nu+v45/8FBP+Co1t+zxdeK/gh+zhZ+HviF+0DoOgHWviD4l8RNqF38IP2bPD12Us9O8S/FWfSLhLvxD4x1m+uLWw8AfB/Q7qPxN4w8R3Wn6O9xYwSvcn4zinjTL+HIyw9CcMVj5txlRU05QUaeIquUYNtudNQ5pR+GMOedWScXCX23DHA+Z8SQjiox9jRnWWHoRabnXq80rumlHlVPkVnJScrqSSbim/wCW2y/Z08W/tR33x7/bP/a/8e+Mfjr4p8GfBf4++LPCes/Fa4tdWt7TVT4V134ZeFrHwV4UstnhL4f+DtG8X6/rFhp+j+DLCPQbrxT4b8aQ3E+qXWl6FrlfztxH4qZxj5YCWAxOIw8cdiMtnSeEryip4Kji4VM7TlBp1cPisP7BQlP3sNBc1GMVKZ+3YTw+yvKsflGTzoYXEvCzr/2xOvQp1XPM68KdLC4aPtFJyjltWnXdaLtzxrS9pCaUU+e/Yn+H3xR/Y18ZeGpP2afiRrHwe8a/EK68Qaz8HtXhuobL4dfEqXRPiZ4l8I6v8B/i1ouqOnhPVNI8Q+L9I1DSPhp4i1e0Fz4P8R6j4T8P3d/a+HvE1zqFh6cvEnOqOYU8VRqYh1IujgcRQhOVanHETpSr4epSoSn7Or/sNNOtGpGKlObnd1YubrEeH2WezxmExOEw7p0a08TicNSpRo4qll/tJRnmrr04qtRwtDEVaOH5VL2T9tSi4pH6e/HP/gqz+0n+2joXgT9jPw/pnir9mP4pfGLxpZfC3xJrXw61XXtI1jV9NtNQj074pX+m+K7k22u/DLXPDkC6xba98N/NbxN4V0/Stf1/U/FOr6JLoUj/AF+a+Kub4jD1sRlGGw1LCYLB4z+1Z+0hKqsVWwdT6lHBupTnOeHVb2XssWvZSq1Z+xULw5Z/NYLwqyvIsZUxea4mtmeV6QyfF0oWoYhN1ISp4unGpGKx1JTVarh+etGEZUZqo27n44fsg6d4S/Zh/a38U/tGeGfEni/wD4fv/iJ438HeNvFHhLWtQg8VeG/hUfHviPw58KPiRYXEz3EfiDUfAVromieLPGll4l/tnTfHHhfW9e0TxJaak2owX9v8zV464jq0OTKsVKpmFPB5LmWFlVqylD2zy9VM0hiKcnUjUTxVWEZwnTnTc4pRhCTafp43w+ynB4TJqc6Easc6w/ElSi4QUaieHzKhTw160VzwtCry02pNxjdJNI/vt/ZY+NfiH4q+F9V8OfEL+xz8TvADaTb+JtW8NrJD4R8eeHdcs573wZ8VvBcDXN4bfw/44sba6NzpDXc7+HfEth4g8P8A2q6tLGw1Gf8AbuBOMcPxlkWHx0JU44+MPY5thU2pYWvCVWOkbO3OvZVE3yP95blTvf8ACeI8hrcP5jVwlSFRUFN1MDUnBp14NzUk3dr3Jc9NwvOKcFZ2jdfVEYwG5J+71yepfGCT7HP16kjNfY4enKlTlBylJe0nyucnKXLzPlu5NvZaK7t53V/CUruUbWcVG/a75r202921vNdbkn+f59/z/wAjjbo/L8fi/wDkV/4Eu2r/AKv9/wDwP6bPnD9pj9qH4NfsifCrV/i98bPE7aJ4fs5IrHRtJ0+GXU/F3jbxHceYuleD/BHhy3kW98Q+I9Ym2wWOn2g2gsZ72a3sknuR5eYZpg8rwUsdmdRYammlGHMot3k7c15R96HK5Veb3YRV+Z2lftyjKsZnOLng8upSrYuUKtSUXd0nRo051K1azbjCMacZS92LcbQkotXZ/Hj+3X+0b+2D/wAFHPiNL8KPH/iDXfgx8HNM/tPWdW/ZZ8C69PaWOmabpMEcy2X7TfirSmS7+IfjOxe/0S38UfD1Z4fhh4U8Ya34M+HGo6XrXi2bxVLb/gfE/izi68MRhsmssNim8DSxNOSTbqqq3WpNxc2pKL5Zp35JTqRSVm/3PIPDXCYDKFnmbxjXjTUXQjUUpUsTWjKpzwnSlJwnRoTjOlOMuaFSXLKcHJyS+HPjd+wj8L/hJ+0vd6X8MPClkg/Za+EngDT9es9EjvvDV5qeieDPh18Frv4n6umvaGsWt+HPEWm+LPEUnibQ/FOnXU2peFXTU9ZtPPubaK2n+RwniPmuNpYrFV8XiKX9o0MLjMK5V6kXhV9crUX7Gp7VTpUeSM3OEGoOPOnFuUrfX0eBcn/sCOYRo4abqZ7Wymoo4elKM2sHg6uEeGjyuHI6uIpvljyxaummlO/7L/B//grh+05+yp8NdI8L/E251L9pX4X+JtB1bVfhF8fNbshc/F7wv4Z0Fp7bxX4f8b+GtIKw/E34jfCXU4l8NeOPCUt5YeILGS60f4hW+u+IfhxqUUdv9tkPi9mKw+Iy/FZesZiaDwuGwmMm/Y0o1sZGu8rWaVFph8PmlOm62WYle1q4zDQq1q0KU1aXyOP8JMNmWLxUsJiY5XjcDzzx+Twcqlavl+FnUhmWdZbSnJOssNKKnmOF5aWHwNatSw2GnVpylJfiP+2h4D8Q/tbXXwY+O/x+8f8Ajbx94g/aFn+L3xh0bU9X8U3uq2/gX4e+DNV0Xwh8DNN+HdtIDo/hjw3e6ta+OfFka6BommW/iFtO0bXLpL20ks7aLx6fiLnVfMcwwE8VV+tYTErK6qqS9kqFCpQhmeJrVKcHyrEyhP6lTlJSnCkqdp06kWn7mC8PMkxCq4XD0KTo4LDSqqr7tV4rE8suWMK8r1HGFOp9alFysnzxSlGPM/6iv+CVf7YPipPh54J8L+M/FV34p8KaRrum/BD4qaNqV1d3+sfAv44xSxaV4c8UaFqF7fXepS/AP46MkV9oOh6zNeTfDTxNqdhoGi6mfDAvtM0/6LgDxNqSz+rwtnClHLsXyvhLMcVOU8RisHCdVRwOKr1W6mIxmEpfV1iatSrWrTq1YyrVW5KU/wA14x4ElgcJg80w1lVpZZg69WlShyUcRCVKanjuSElFOsk5xThyKGlPmlzs/oRB+Yrv5ABPPTlhzz3wMZOcepDE/u8KbowrNSlLnleLk22tZaRbbt8OiWiT2urH5Yrzjs4ta6aN6uOyXp97dtLtOcnn2P5sP/Zf1HfNdNOnKMErxei1a1es31Tf2e/2n2d8HiYxcotfC7bLo5K+3XR9d1/Lr89/tT/tGeDf2VPgl4y+M3jMi5h0O0isfDmgLcw2t34u8Z6nJLb+G/C1hPLIqxS6ndxl767ZWi0zRoNT1m5H2SxuWHk5zm2GyTK8ZmWKnThTw8E/3lTki6lSbo4eEpfY9rWlGEZt253yL33r73D+SY3ibOMFkOX05yxWNqx5akU+WFKmq9SvOdl8NOjSnUaco+7GS505cx/HL8a/ih431jTte+Nvxi1O91j9oP8Aas8F3vxA8Y3kYu0n+En7Hv8AaWo2XgP4QeArOQtc+F774+XGkTPqlra41SD4eWE3hyaSTWtU1y+uP404k4gzPi3OKqxc6aqQrvB4SKlKOFlmFJ1oY2niaaqOM45LUh9WqUudLEznTqp0oRdM/r3g/hfJcsr1sMqSr5Nwxg447OMTBQvjnSkoS56ii1CGaOUsThKblOUIqvBuq4RrP9Jf2dfhan7O3hDw/oviEWkHjXwH+zz8Sv2k/ivqUUSJY23xV+JNvL4d0HR7IxMPssPwz8G+EtY8D6PE7m3fQpGuICXlkr83zHGYLHU4044qE8tx2b4PJcpdNWrxy6hiKd4urzNOcVjJOM+WKUpL3HdnnZtXxOZY/GVcRTqwrQqfWKcsLL2aoUHKb9jhk/aclL/Z5tR1SSd02pN/AH7InhCL4vfCn9qn4LrAy+JfEH7Pvwv+L3g21W3Mj6R4+8A+IvFWvaZcWwYFJ59Q8Q6tZ6VPESEa0kltJvNs7u5if0sRi3g1gMTPGwdLF5rUyzFTrJyrOmsvnhqFp8y5Z03GjKErNRqqnPldrH3fGzhg814XrUMQ8LVw+UYHHVYwhecKTxNeniOZ88HKNfDxmq6SXNSnUi3Z3fk2nWun/FX9m3xNd/2ab7xB+y74e0bxvb28G641HxN+xv441e7n8UeFZriI+ffz/s3+OUu/GXgu9DJe6P4Unu9O0ySINNcp7eFp4pV6WCwmJ5pTlWwzrQ5adenjqNSVPDVKlbn0hjMPCX1+HLzYjFTjiE4JOm8M0xOW8OZ1XxcYUa3DHFWXYfEfU1ScaNP6xToVsXi6STqQp1o1pKnh8RL3KNOX1dxnUruZ82/A+xuvE/7Tsvwe8ValqPiPWvGC2nhC/wDE3iTUJtQ1LxjP8VvDvxX8KeDfFeqatNJ519qOq69rfgq11nUpGW7j1WKe9I3y2Ir1a1ajHBQzJSqYPKZPNK2LwFKLdHAV8BGnUVPDU3yqhSkqjTj76ceRKfNGVr4nwryrB4rLcLU+rYvJHwzTwcYrl5sllXzCNPH1YJqUq8oUZvGyTSoxVOVRWmm/24/4JXftAjwJ8IvDdtqMsMNx8DPH+i6nqelEst3Y/BD4467HoHjhLOzjjaeXR/AvxA1LU7+G0t0ZbUaT4cjup7e0uPs47uB83xHDviNk2bVYKGDz+mstzquoXnXxU1XhgE6inyKEYzwUnF35pOdpptM/MvFPh/D4vIpSwE6c6eYYaGb5XKq1KeGwmFjUji1GolG1eu8JjGpKN1SlTTi0lJ/1UxBlVsOD9wFic7iAQSpJ6HAPp8wIJIYD+0acoUnVg+ZU4TupNpu9WVWo9UvhTbil0Vle697+UldaOXNBRSpt/wARpSdnOV7Slyr3trvW6acX84ftY/tMeDv2TPgZ4y+MfjFoLv8AsmKLS/Cfhw3CWt14v8a6nHdroHhq1nlfbDHdS20t9q1/hl0nw9ZaxrE0UkFlNnizrNsJkGWYvNMc/wBzh6MqkYRkozqSjGUlThdO85WfKknZNyaez9fhnI8dxZnODyPLEliq2IhCtUqJulRouUoTrVH7qhTh7spSbtdqF1zc6/js+NfxG8b3mmeIPit8XtR1HxD+0X+1R4Pj+JfxSvDFcR3vw3/ZUvLy9tfhP8A/A9ozPP4Ym+OVzpbaj4m0ywSO/i8Cada+BpVkv9Q1e6uf4xzziDM+Js1q4zFVKdbCyxNLBT/etUliY1pTr1qF5OMcNSw1ejGm05U6c/az55RTif2FwTwnluHljYUqKpcO5HgpZjUpVVC+OrSp1qFV4mW2IxNSWGVKonGNSpSUKKhFxjVf6V/A/wCGZ/Zq8DDQdZNjH40+FX7MvxH/AGgfilrUMaJan4y/Fq2v9MtrWzuY2Jt0+H3hrwHqPgbRoWkMQ8LT2ElqWMrSH82xmJoYzE+1p4lwjPN4ZTRoc6lUq5fQ9riZwp1E0pQnjcNCrNxjKMoyqqMUuaT82tisVmea8+KoTqfWZQq0akbqMKVCvTw2FpwotTc1SwUFTjGM4tcsISvypv8AP79lHwVH8WPgh+1r8HLa1Y+KP+FI/Bz40+B7NYPMOl+NPh9qHjXUdPS0DKY5JtZ1W6TQrmN9sH2aaSG5V7a4nQ+3jcTh8HmeExGJxtL6ni8yx2BzKjNf7LTwuKxTn9Tq0vafA/ZWjFyStFKzSR9vxP7TLMx4dx1TDypYqjgMurUeRrlxNLBYaFOMZQcVKlJc0JSouUpSTnGLbTv5VDa6d8T/ANmzXdcSy+3eIf2WdH8Ma5O9rJO1/wCJv2MfH+rXl3b2sl/EwvJr79mjx6t9r3hHVFkj1PSvAstzaWMscUcF2eylGdKWWUqmMpUsTmlfFqnKpBe0wOZ0Y0pzVWTq3U83pvDYTklFSnONlCUVyk4l4fh/iirWqRUuHuL8BR9vh6d1hK1DEvEUKbwtNKUaFHAp1sTXk3KMVyx5lKpGR81fA3T77xb+0jrPwZ8T3194h8SeK7eXwVdeIPEd/Jeaj4v1v4l+Bfi5ovgXxhqupyOXutT8ReKj8N112/ZxcDWo72cJue0DfQSm8Tk0czwKqRrYnDxoUqEVL61hMPh88ksa8LOV3SjKVDE1bcskqc9Xyy5jLiOjh8uyajl0VClHKsbRxteCtyVJ4iso4SnTVtKdShVw8qkLvnc6jVryP3L/AOCVf7Qcfg/4Q+BILi4iik+Cvj3QrTVNKndkurD4EftBaxbWF35NqE+0Po/gX4hapMyWsO42UegaT/aFxBaym2Pp8CZzPJfEfAY+t7ahhM+qQynFSb0nLCp0MvqYqaSjOpiMPSlXpTSXNCdWUFO3MfmXjDkNGeTVcRh/Z1K+KwWGzXB+ytKMKkaVN4/DQpuT5vYznKlGHPH2dOjTpybkpt/1LISu4MR8pOw4PIUnnqS2OPxbkMASf7Nje9SVuXmm7xk9WlJXqQ91e5Z3tZ6L4moo/lJKNP8Ad+9yxpwlG+rfK6jn73oo7q+17tqT+X/2wv2pPCH7IvwD8Y/GTxSsN/c2Cx6L4K8OSzrat4r8cajFfNouiec0iNb2ESWlzrPiG/Un+y/DGna3qjK5tFVvGz3N6OQ5djMdjZLkhCMsLBJR9vWm6lOjhE5SftKs6seaXIk1CpH3W43f0HCmQY3irP8ADZDlyX1mvOXt600+TD4ehRnisVi2krezw+EpyrX5lGUlyOcbtr+Pr45eNviDLYax4o+KNxf+L/2l/wBpzw7o3xP+Od9Orrqvhv4N+JtTlg/Z8/ZX8KW8YQ+HNP8AiPeWtr4l8eeH9NFvJ/Y1n4c8BXEc8FxfNL/G+fcRZlxNm+KxtWjUr/WKsKGAoqTWHWJwylSxNXDQcZKFbCUaVbC1acHUdacqlbnpJSg/684N4ayzKaLxChTnkPDHtqWLrRlDmzHFVZVFCpXqJy5qNTE1faYeU1/s9OH1aTq89OufpD4e8A2n7NfwL+K3hzUJLK91r4Kfsi+NNV+IHiG0SGKDV/jn8d11u/8AGWqDAxBLpWn+F/Duj+HZ1b7RB4OvLPS1f7JHGtfBYmt9czXJ6cKLo4HHZ5UwGG/exVTBYTA16VLDUZ1lBRhOVPEa1HFOg4SclVdRSPHlVr4/NcViMXP6xjaUsvxEnCSfNVrzx1Spam1KUKang+ZOTd41Er3hK/wV8GPBVr4+/Y+/bK8BmKG7174LD4LfHTR7Oa3Hly6po/grxjpni2EAqwlt/Efgnwfrfh6+tIP3l1DciwlfbPtPZSr1I4zAZhPGU1h8wx2Z5QpTp3devTwUFgHXp+15qjw+LxVOtTxvuwjOMZKm3Rm3+icVOplXF2DVLCQhCGWZXPF0ZNqk8DjcbXoY+pCFlbEVsJTrUHNtrkcfdkotvzbxFZn4gfAmw+KkV9qlp4w/Z28SeA/hL8R/FOnXktn4nvvg54n8iX9mP4zx6tE6TxeM/g34llX4d3XieKR7xdCi0651CeV7MxQ+nRr1sPVweGoNRq43C18bhXTkuaOLy/MK2Cx2Epyb2xeGoYzHSppuTpSTSkpKRySweG4e4lx+UY5PEcN566Valhq1qkJvE4ajiMNiJTVlHFYfEzpUaFVU2vq1OvSklKLqS+S/gjZ3PivxL8ePhlqOmR3vibTvAnxDtLeyvzJOureNfAPw48O/FrTdbcvvluofElv8HfFesRWzBhc3d8+nzhmivEH0VVUKTyeeHxM8Ph8VjY51Obi54V5LGVX2tKvFyV4QWKw0Jqco2lfVp3MOIfZ4DFYeM51Jz4dxuQ5bWjiJqcq2JxWHxnIkrK9N/VKkqUdeWFlzS0kf0v8A/BLb4+29t4J/Z2tJbqW/j0bUZP2WfFk88outTh8P3+l3fi79n7V9RVI3uJkFlZ6Z4WtbuR0062Opa+rT3V3aeafoPBjOJZXx7mOW4mpFUuMqMs0qwqYeUIU81wrxVWWEpSdTlpSpRhTnGlyyadZJtKUW/wAb8Y+HqdDDVvq9ZVnlmIeMpVuaM6mKy/GSpYf291FJ4dTp3jaTvJVXGUnCbP6Ia/sA/nA+TP20/wBqrwr+xx8AvFnxj8RLBqGp26jRfAnhmaYxf8JR42vrPUJ9M06Rlkjli0rT7axvfEHiS6icSWXhrS9WukJuI7dH8XPs5oZDlmJzDEezk4pUsLSclCdbFS9pKlRjdPmlONKpNLdRhO6aV373DHDuN4rzrD5NgeaFSonUq4jlbo4ehCTU69bVXpxcoQlaSSnOknJPR/x/fHDxT8RFh1e8+I9zf+NP2mP2lNG8LfFL9oO9uUY6vpvgjxfqi/8ADOP7KOgxw4bQdF8TzxaZ4r+Ifh3TI40+yw+FvBM8E9hHLCf4wzvPMfxTnNbGZljZQX1mpltKthZuGB5MM5f2pmVOk5y5WqNalLLaynJYWarTc6jbif15wjlOUZW8xq0MDVeR5JRq16dCcFGriq8VWdHB1MQoWqV4zpSp106UZVZVPaKm1ODP0hHw9sv2bv2f/jd4WmvLa91T4I/sja3YeMvEVoI4otd+OXx7Gv6t4+1zzFI8i6tJdL8KWmj3IY3B8I32kabJMbe1glH57iMY8+xkKtCVDDYeWdUpfV6VOSU8LgPYSw9HCXqNrCUa+G+vRppTSzGdfE87cuReVCrUxmZQrY5VKk8xxeEak2vcxVXFPCYag04/xfZ+wTcpKVpLRqPK/hH4V+DrT4gfsY/tieEmtI7vVvgP4i+Enxu0y0mt8xkxeAta03xzbbPJYyW3iLwF4d1/RbqzgIlmLW1tM7JNI9e/i7f2zgKUMVRhUzbCZpVlCKUHU+r5hGXtKlR1GpTaVOdVOPNKbaTvFtfb8SOGTcYQxVTERbWAy7D4+jVhzJ0sLhcHgqlLErnvWjGcFyRfLFKLm5Xjyy818WWVx48+COjfFtNU1Sw8bfAnxV4M+B/xW8XaTe3Fl4rufAWsw27/ALLfx6t9YhdJrbxr8OdRni+GWreIonae5tItMuNTlmTT51TqwmMnUrrFUn/aFTMILG0Zc8aFCtVwUW89wGLg1VnUw2OdbDKMHUiqShZKrKpdKOGweT8S5rkOMlTxWS5vKrSy+fsZurgFmFeqsrq4OrzyjScIuU501GUsU1vRjSTl8jfBK1bxdfftBfDjVNIiuvEWieA/iIItJuQ8sd34t+GXg34ffFePUxtdmmj8Q6H8J/iLfabbsNlxJqy20ksm2XP0OIqLLqWFxkMTVbr4HCVcH7j/AHGJxmPxWChRqNyfJy1FSboySqUYuNZTcaiRzZ3Xw9OdDA1L4WrlvEk451h6crYd4V4XAOssHDlXs6OJwycPbXqQqVpVaTjeEmf07f8ABL748qng39nyznv2vzby3X7KfjO8nnM2q26WOi3njH4C61qnlxvPcfb9D0xdDtLyZotNjn1rXEje5uhFNX1Xg7mksj4/zPJa1GNHLeJsJ7fDRhBr2ub0o03iqspuWrbp4tQi43jdvmko6/i/jLw2qOFcKM6beBqxzKpiE4RxMcrxz9ph8NhpxTsoQxeEde6kpVE23GVm/wCgqIEIQSerdTnje+MfhnIPIJPPAz/WdKyg4Lak/ZRfeNNuMW31bV7vq+bvp/Oq5rPm5W0krxVk7Odnq3q1Zt31be1rP+QT9jYhf+D0f/grn3/4wB+GgH/hB/8ABLX+i5/HHUZq21FXb0ulfXdvlX3v/gt7gle/lu9e7Wyu+nm9Vq7Nn9KX7ZH7Vfgz9j/4CeL/AIveKlt7y/tY30fwT4ZnuDC/ivxjd295Lp2nFkbzYtKsYLa513xNfQ7pNN8M2Gq3scct0lrayeVnmc4PIMur4/GyX7unJ0MMpRjWxldRm4YajzPlVSrKMYRlNqEZSTnJJxb93hTIcdxXnGFyrAp0nUrU/rGLnCUqOBwSq8tfMa9mpKjhoP21SEb1XBWSc7RP4/PjP478X2+jeI/id8ZNb1HxB+0j+1J4JT4ofGzWplYap8KP2WtRlu5Phr8APCFtGZP+EVvvjTFZnUPE+labIJdN+HlnbeCkkmiu7jUrr+NM54hxHFWd4nG5jUqYjAfWX/ZuGjKaqVcXSpyoSr0uZRSo4ekqtBxlH2bqJyjJpn9c8E8L5ThVXnhqCwOU8NxlUxVatKFWljszjUVNuvKDlU9nUdWUox9ycfcjUtNNv9OP2XPhEfgHYfDPwt4nSys/H3hj4QeP/wBp74xXMcAjtNP+InjxIfBfhXR7efGUtPhf4N0bxR4FtrSZ2hi01m1COMyXVxdN+cY+phcxWItVkqUswwGU4WMZtuphMPjIqvFRblKUq9KvZTXuqT95NRR5uYYzE5jmmZZniY1KOJhSnOthYcv1evSrRxUsNh6es0qeFnSqzot1LPmivayleJ+fv7EfhfTfjavx3+CmpzpY3Pxt/ZffxTosMnmJNo3jzTPiAnjKw8So8QeYTaT4o8S6TPuhb7WI0mhiuFjmLV14zGQyrCPO251Vl+eZdk8cLVnZPDzw2MlaclH+GoYNQa0leULLSSf2vGeGnh6XBGJwntaNShkFTG4WlSlTUY16lTCKpUqc7cXX9rWlOlLn9lGHP7SEpOLPKPh7o9z8Zfgt42+Fr6At98RvhN4S8T/HX4LaFLBBPd674Ke6t7X9qn9mme1YyQ3lhdXU9t448K6EPMttH8W3MtpZwLYhbS4+jrVY05zwbx06OFhiKWX4h0oKM45jTnTxWW161Tkb9tPE1KNKtUtToujCEItSdWSM2lh8izvJ87oUYYvIswy6i6tKnJxeJjXqZhhpxk6s403hcK2q0YWeM9tNuU5UlTiviifxxcaF8XvBOr6h4j1jxnFPpNj438EeIfEl5JqLXnwy8L3ngLXfDfhj7VdLNPcWXw9i8NR6JY2l6ZLtfD15odtd3DyiaRfbhGvisHTq0o044z+0qeUZhDCwl7T+0XWrUa1aPtJypqti61GpUlNy+rucW4qMLHZjMtwGCwuJy+hKUsFisrzXiXJJ1HC2JrVlTxeHo03FRl9UwPt40q1OaVdqdJQquanI/Zn9hGW5+EPx2/aq/Zv8PO2m3GoeK/Efi34R2Hmo5f4kfCLUYNa8AX2mC5dkbUvGPwrvPh1rN2CTbNLoc0V0bya4uoz4GPznE4HNuFuIcLSrThllSEsP9XUaaqZfUxeLwGJtzSb56GPq4ic3KSjKkn7OmpWPgs4ybDZhwZhcVLkVTG0a+CzalVUp1o46OJrVo4mo4Jw5FhKOHitLwhFOW8pP+sX4TfELSvi18MPAXxO0TYNO8deFdB8SwQRyNILNtTsI7i5sHeSOJ3k027a4sJWaKNjLby7kU4B/vTB4mjjKOGxGHq069KrSjOjXpNxp4mlOLtXoqbc1Ta99KfvqElo27n8d4ilLBYjF0qkub2dR0vd1bcZ1It8zdmpLla6pNJpuLb9BMiorMQCFUkncoCqpcszlmCqqgkszYAU/MTnJ0XM4uT1nTm04XSbXPLkd76JwSd3KyV+rSeF2ueEIuXPGMoxjZN3k043b3u213tLdqSf8p37dv7Wejftm/FP4j6NqN9qVz+wp+yJHp3ibxtoej3T2a/tMfFy91y78PfDX4fi4t5XOo6X468WWs9n4ftxsit/Bljq3ivab7XdDvLD+cPFDxAr47ExyDIa3PRnjXg6+KpTXLS+rOFbFYuTck3TwtGXtKTV1JxlyKpK8X/RXBHAbyPAZZjsVh5VM8z7AYfH4DDOFpYLBYmpXoKOJpzg5RqVuSpGpT0nFzowqqkpRqS+Vf2aNC8VeMvF/7QX7XnxEktby9+DPhqWLQJdPsEj0v/hovx1oMHhzwJp/hfTAgt7Hwf8As++D9b0PTvBmkWcaJYHXdPvbeP8AtK3uJq/BMbiFgpYTD4eFVyznF4rBrEe0pqnSwNHEyw+NzJwclUprNKrpY6alGycnGEIK8T9b4lp1cpy+hw3h7yo/V6OPxzoyTxUcQ6Dr1Mto1ZS9kqMZVJ0f3vNUThTk60mpe02v+Ci1zY/D/wCLfw68GWM9tYWvwK/Z2+GwtrmF3a10lX8e6rd6vBGBukgEtn8PdHuYiAXET2bOVZUY8eRc2HwdZzlF18RmuNxFGCu/bOWUvCxcJc3LeM4c7i5c0lCfKm9T2+EsE6+WcQ+zo8kK2VQpPGLTDUXh8T9a5KsG3UbqQpqCttOSu2m5OX9rmDS/2fP2ydV+LsGg2mt/DX4weELb4l+NfBlzCJNH8X/C74hRDwj+0X4E1C2LrFeSXFvp+l/EPTogqQaR4rl0XVEmhuLq+vm7cqxVfE4HB4OeLjHMsJi8R/tdKE4fVM4pVIf2POpTcHJQhiFW5Y1YScqbaScoo8rJcBDO+EczwcXOjU4fnDN6L5lOvj8PV+sYjF+yd37tKnhKVlOzvNq7TaPgL9rD4d6n8C9a+K3gKDxRr2peB9D0/R/GJntrqQ6V8X/gD4l8N66fg58UNbgkX7Pr/iH4U2+o3thJrS+Xeo+h679oIt72yso/oclx8sXhqlK2Hw+Ezn22Cy3DfvXjMJnVCvzYyniJKcoU6uPWFxWY0Uoxp+wrU4yfPBt+zgquDz/JHmeY0v8AhQ4YrxoY2vBKOKr5POVS2IUrOLp4TGVsPgpyS9o507pypO72fh7q2oaN4Q/Zz/aK8NWnl+K/hx8bNcU6jbSst2uoz+CPAPx28N6VLIP3bReNLPUfj14cvZJx9mitQVlM8UphZY5ThPN8v9vGeCoZRhcrpRr0Jyji8Xi6mNwdatWcYp8mE5sNiKXs4wqU25OUm5aeesDTzLiDM8t9rHmz3BYjNanNJuviHgqWNxjjhpJckXjOT2UXPmi5SV7KNz+y39i/4saL4g1jxr4B0y7guNE1zw/4W+P3wzuoZN9vqPgr4k/aIvES2AVDtttM8W2DapMJ3WaObxUthFBHb2aCv3rwDzynj+Fa+RSrVKuI4axNTCSlW5/a1KeJxOIrxlrGK9jTb5MMrKcaHJGfPJzqH8p+JWW08JnixlBQVLF0lRlCmrRo18CoYWrCrZ2debpe0qNaNt2tZn35X7qfnR+Uv/BUD9tjxH+zJ8P9D+FfwTgOtftMfHW5h8M/C/TbL7PPdeGrbVdUj8Nx+MJbe4Z4BqF3rGoWuieEFvYJbP8Atc6jrt5BdaX4e1e0f4bjfjDC8LZTXh9YjDMsRTqzw8ZPWnhIv/ace0k/3OCcoe2gmq03OLoxlaTf3fAXCFXifH4mvj4z/wBXcpgq+LxEEozq45xnPC5RCpJtQxGYuFVYerKLo0VRk604uUaj/mY8Y+CNS1bx74b/AGQ/hFrq67rLfFS28PeP/ifcvc6ld/Fr9q/U1v8A/hcHxi8Q3k80l7q3hr9n3RR4l0T4f2F/K0FtrOneIr0M3iW+juU/jypmrzBVczzevVo18Rhq2NxWFquXt6OHp4utSw1Dnip01UxNalQrRqJcv1Worx53M/rDJsIsBkWY59DCwwvsFDKOF4TS9n7blpV6uPqqNpTgsG8ThpQhJVYY+Osp4eCZ+iP7ROj+Ffh7+yf+09oPg+y/szw/Z+Kvgn+y78O7P90yL4e+H2p+DLjUmjlWOLz01/WdW8Wz67Gi5uPEEetX7oZ7iYH5jCYutjc1yPCzdKNSrgM24oxUlGcaXtp4SjjPq8Y3cl7OWHvhfsRnOUa0pQseHkNKric5y6cp1q055lltKtCs4OriKscwlDEzjKMYxU6saypxTS93kbfNzSl8YXng7SPiL/wT517xSUW4m/Zx/aW8Y6TqZgYx3lt8P/ihaeA5vG1qJgrTRNDq/jnRPFlg1uwlXWNK0q4VlaC5kPq0sbjaeMwNOOIVDMsxo1sTl+NcZSoU6kcTXoQrezScnUjShUoc2qvOpaLSTf1uKlHC+IuOweKw8a1F1sLkVdylGNP+zsbgKGaVMLj1zJ1cOq1OjOUcM4VlUpUeWcoRq83nfxPg1nx58P8AwH+0zp+tX/hz4hWXjyP4E/HPxn4cdLDWvD/7QHh7QrX/AIUj+0dpM8CSx6bqvxQ8HXml6L4xdonsNT8Ry6Np2oef9r1W1PXha9GNLDUcLCt7Ghl+GzHLsDBTk5YCjXxFWrllSdnzvDU8NVqqbkv4kvfduUjK8PPKM0zXgrHxVTKJY3EfUMXiOTnnjcXSjhf7ZqxjKLnCvUjhaEY0qULRgoKlHlnOfx98B7dPGt58b/AT6MG1zTfAXxNs7Pw/fAOr+Pfhl4B8AfFG0RySwuNNvLj4VeOtTgtAHXVNPkW1uYTFLewn6DEUacMHlEMLUnFcQY2jiMZi1KEVgMqrzrzx2Hl7RXboyrUablGLUXGyb3M85xFPKfZ4rDUoez4TxNDLq1XEWlSq1sQp1KjowhKNWEMXPBOtTjUV1DlU2ptX/pL/AOCXvx2tdK+Gn7PNzNfXF4ngrxbZfsteKby7ljk1AeAfHUdvd/ATU9WlkR7jyre9m8CeFraKMG4aW8kutRvibXVC3v8AhBnM8o8R8ywddSoYLiqlUlQpVnGMaWJw9KpUlS9xKnGvOng3VVOMUnTq02k2+ZfkXi/w7DDZbjarnTrzwUMLjsFiKKai8Jia9PDzqShUXPKj7SpKC97nVRS2hfm/ozgYkMGIyAmQM8N82ep7nOOOhGSTjP8AYMXHkSgmoqEJRvuqcuflT0+KK+Neaskr3/mSClGKjUs6loupNNcs272cY810pWbSlqrWau7viviP8SPCHwl8B+MPiX491WHQ/B/gbQNS8S+I9WndCtrpmmwvLN5UIfzLm7uCq29hZQhrm9vpraxtUkupoo2mvXw+Fo1K+IrwpwpRlOTalpGKd5bbXUY9+acFq22dOGw2Jx1WlhMFQnisbXqQpUcHRXNWqSnKUVZfDZRTnJ3ajF3k0m2fx8/Hb9pb4g/tA+J9S/bQ+IUUmm65qfjDxH8Hv2BfhlqTQXeh/Ce30IN/wtj9o2602V3sNT8SfDmxmi0rSdZu1drz4sXUckX/ABItL8Hwx/x7x7xrW4rzHE4Z4idDJ8NTVSWEi26saNedSGEp88bw589lSeExkW5Wowg4exmpyf8AWnBvAOFwOIwPC2GgsTjamLguJcbC0a8quDnGU6eGqSjGjDCZa41cVg1UU5Kbqwxcq9KdOC9Q/YX+CkFh8Pvhp401Wxjl1f8AaY+MWmP4ebUVa71G0/Z9+DreIfH8EmsyXSG61Fvix458PxeIfFk9yVe8udf8JzXUst9ayXU35bn2ZqlCvgcrrRjHA5fGonUbd8fW5K1KhCS5acfqtKc8NGnK9R8kpKbTbPb4gxrxmOq4alGNPK8BPFZbSwlO8mqdHEVKGJxkkudvFYyrR+t1qsP9m568uWnCMqcH5p8LPEmieKf+Ckvia511YL7QPjF8Zf2lfhjeWl2rSwaz4R1X4deLbHVNGuHRj5kd0vw4a3EZdMRxiBgrqpNTlUpZRhVSlTm8o4fyipjJzp1FGjX/ALfxSp0a1F2rTVSVSlCVSC5LVV76SqyPo8XlkKPBWVUZRaqSxdXG4D2bThWq+wpU6lWdSHPCMqVKi6kYuSkrQ0lJJS8Y+Gvw6nj8efFP9ibxFqa28+v+NvGHh/4W+JtQK58E/tQ/CjS9Tv8A4UeMtyrHEtn8Y/hrYReDviVawCGxv7d7QXLNexhpu+GYNRxFenOTqfVFjM1wVJRSr4HNKdSvjfZTmnFQy23ssG/bc9KE4xn7SS51z42dZ5Vw/wAaYDklicsx9PLMZOrzutjXlleNCEafsmoewqLDznXjUpudZyjGjKLlUb/PD4ianrVhq3gDSdRGuW1vqep6p4E8NeGdVuHmsPhR4l0ZfiNY+PPhfplpLGkunWLeOdcvNYsrJG8mPUl8QizSzt3s7SvpcMnWwGN9nXozzjA0cPiJzjGrGpjfrGJo0aVTETm1TlOGErqmnTlFpwheNT3mfSKnw9hJYLM6FPEUMJn6xdR4VypyeEzH6jjqSo0pRhaEJ1MP9YlGq5PknJRmm4RP1j/Y51rQ/B/7YOt6DM76b4J/aq+FPw/ScyM8lhqFz8TPh3pvxN8DeInjMgEupwfEP/hbWiWao8SWdnrVnBNdJDbaVbjwM/xWNdDD4mhhq1Wrw3nEq+FVLkp1qdfK8RRnnKVRuNKca9LD4eL6uSk7tNzf53SyqrmHA9OWLVOtmOVSxOXZmou0J0MXTp4bCqFOTdRUKTpYl0YPmqpNptyd1/Wl+zb8Sbz4rfBbwh4s1ZXj8T28eq+EPG9rNJE9xaeOfA2uah4P8WwXJhigg8461ot3cuLaNbYi4DWryWxjc/3Fw3mtPN+H8ozKlUjiFXweEqxnF29rWdJ+2oxdSX8SlUjOnWk3aVWm3C8UfyBm2C/svNsww/NGUMPWqRjyp2cHOfI46aJRsnF7Oy5pOzPduO5P5fX/AGvp+ZHbJ9qSxHNPlnyxu7K70XNNL7X93/yZ6ppt+YoU5JySXvWevNfVztfT1+Vru58Lftq/sK+EP25rj4Y+Hvil8Q/GmgfDDwPbfEefWfAXgmWHR77xl4m8Y+H7PwxoOu3fjBZJNR0KLwXpkviOKCz0qz+0aq/iKUS6pZwWkkNx5Od5DlfEEMFhczo1K9PD4p4mVGNVU6VSmqFaCjiIvWpCNd0q1OEPfVenTlLmpe0i/f4f4ozjhepmtfKamHoVsdlscFSxdWnz1sNWljKU/aYfV2lOEHRle69nVl1jc/i78WeBf2jfidr/AMbPjD41+Kei2UXgP4g/s9eDb3SNE8PW8kJuvhfrfwc8HeD/AAn4We8ZpT4Q+w63beIvGcuqK2r61qeh3dsjWcWvauU/kzNanD2QYjMY4TLas8Zlee8YYfCVK9SElUq1s2qr22Js6XPXhyWw/KlRhGfvJyUb/wBX8MYPOYU8n4UrZzReD42y7hLMc1xkKNRVfbYvLMRicbhI+62oSr4iTT1StKLlJNSf3XrH7QPx++JnjrV/CfieXwVolt+33+x1barqs3hyz1aOf4JP4F0T442mq6d4F1TUImuvE934p0PTdX+1za1FajQvE+sabq2nifT9KgsJfjsPgeHsDh1hcPgniYZBxpTo4KrNyj7epKtlzrxnCajKKgowfO2oyUuWMW+dnjywGZPD5pXWM5ZQwTpUYJXSoN4uNKet1eUpTfvP2iaV7Qd3+fXwv+M3xk/Yz/ab+KQ0L4peGL+18DR+Ff2Z7fxh8R7e30nwNeeDtf8AD2k+I7n4s/EqG1jK3XjDwB4nikbS20y70nw/rDWsml6zZwQamRb/AGEsuyHPcowkZ5ZOlWrY2rjowpvnccbRr4qhToU7Xj7GtGlTm1rUhJQaqSdOVOpvj80zrMXllXFV6M4rCRyynWmnGbw1GFWtWmk5Jtrlq02re/FzUYucuY8T/Zv+PPxH8B/FX4Mr8NfiD4D+J3hzxN8Efij4W8aeD/EF3bxzeMNL8f31xpviH4a+LZtLtrr7Do3hHR9Ch8Q+ENTjtXvRrFzY6dqYn01b2e43znh3LJ5PmOHrYTEYKu6+XYuriaDdR4ec6FWpTqKcVU5/bRm3VjHSnK0ZpTdnazzHZxk2I9uqOJwvDWCrYPK8PL/ZKmYuGKopUJ+2lTnGmvq0ZNz5IyVoqTUmj57ntPEGh3+h/HXxlaa9deHvgpqWi/s32+k+EvFkmmeMviF4l8PaloPxA8Ba1rLxRadp2jXvh57XQ7fUdZtJXu/7V0281/w7ZRzRQWkn0EVgqNPFZFhvq9N57iq+IxEcRRnN4LB1oTU0vZRfNHFRl7tOCvBxjGcVGTqHLj8Vm+eUMJXxVWf1v+x8py+dSUqaWOlWnioYfDVJN8sasJRnHEV240rVYSouD5mfrT/wSK/Zu0z42/tW+BtF8Q+JPjT8NdW8QeC/2nPEHinRtG+JEerz6X4OvfHq+R4Yu9WvtGvdL8T6H4yhn8Na5rlpqGlJb3eoS2HirQ7TRPEDXbR/T8N5JgM+4jqZdWwq+qZZQyvNaFVUnTlLE0pqFKrGM0pRlNUKXPe/uucJSbUWfDcVZxiqHBDdSvJSxGbV8mwbjNTdOeHo0MRi8D7rbjTjQqzrKpK1KU6soQm6jlE/vJt4vJhWFFJSGOKKIM2SI40CKGckFjhQSx53M2c4yf35ctZ1E1+7nvPRe/GUlJKN76Si+V2Ssm3q1f8AA4xSVm1GUUrwV3ZtzUVe1vhWtm1e2rPg/wDbW/YH8I/t1Xfw80v4pfEPxnoXw48DaJ8TYLn4f+DJodGn8UeLPHGi6f4f0fxRqPjGOaTVNKh8I6QmvWsel6VapPqn9vzebqlvbW09ndeVmmRYLOp4WOYSnUwuEqKqsOnaFeScvdqe67wklG8Xo1peL53L2sk4hzDIKePlgKcaeKzLDywVTEJxdTD4erNOrUoy5o2qOMVZ6uMkmoytd/xi6/4T/aU+JmufFn4/eOPinodnc+Gvi/8As8aNe6Ho3hu2e1/t74dXPwg8N+F/Cfhn7Qwkf4faal1p2t+Jl1HGs61f6bcW32m0XXdaz/Ieb1eGMnx2FySlk1eEaWV55gW5VoynRwU6GZPDxxDjNqeOxVWpOjQraww9OeHqVZJUo2/rXh+OPrRnlWIxE6eCziFPHzxFKV3is7nTcaUadKPNUpYGhOjQrTU4qNSpKvGE2+ZP7p8QfHX4+fFLxp46+H3ia68IaFZft8/sbaH431K68N2upwXfwRTwj4L+LkGqeHvAWq3kH2nxUde0HSbiOTVNbis59D8U6pNrdhHLZ21rptfHTwmS4PLYzwmXc3+r2Mws44apKLo4tYyMKyWYzjNVZ1aFPEyjGeErwhKMacLc0as5eN9SzKE61SWMqYSm8VVw1ScZRqVcLPDqtCLw7UZRcMRUoRrrmjOdJVpxdkpRX5/fDL44fGb9jr9o342RaN8VPC1xYeHZLP8AZb/4TH4jWlpo/gObwXN4aHiGL4vePrG2jKXPjvwj4pdU02GwvNJ8LazMl5pWp2UUOpxfZfvJZLw3ntCKqYCrWjia+GzdU+tPGU/bcuXYKMUpLCVfbtyeJdWvGdKlKNe3PGeecZxnuY4fAYnMcWo4rJMqzTC4OK5eavQhiMFCnjK8ryjKvGFKK5KfJLkrVP3bcU14l+zh8cfiJ4L+Jnw00n4d+O/A/wATfCPi/wDZx+IXgPxl4M8Q6hDHP4t0r4ghrXX/AAF4uuNMtblrK3+HmlaJa6t4I1QW73japNFp+uRTaa9/czXUyrLJQzTG4zLpRx9PM8qr4uLtKlhVl+IdfD4qlUcmpyxVW8MRRpN8sYR5opWb786x+JzbJ8NSqc1Onw9g50cCnNU6zoY9SpV6bi3GpKNGNGM6bUbTc6sIylLnPnt4/Eegat4e/aD8Z2viG90b4X6l4e/ZvsdI8H+LZdJ8XePvGPg3UPDnxE8D+K9dnSGxs9AvtCbUfC8eo6rZyzX0Or6Tqmv6BYRJFZaZL9Dg6eBw8oZRQUYSx9TE8QVMVyScsBg6mGxOXVcphRUPayhUnCrjE4RlG9dxnPm0XnZvmmZZ3hsyqTi1UwGQ5RlPLKcIRxOKlnOGnTzOU5T5FPD4StCmotqb9jbllJ3l+vP/AAR5/Zo0r4z/ALUvhTRNd8RfGn4dajffDP8AaG8Q+LfD2kfESPUhpvhOT4w3cFp4K1PULvSb3SfE/h/xFFeeFtc1S1vNNhDau1l4q8PJomsPcKPf4QyrB5lxZiMLicBCpgsuyvLsbgazioSq5jSpU4ZbU9lzKpQk8vqYnmdRKPNHknJVHG/yHFuaYrA8Gq+JeIxWCzWhlMHNuSqYGpRzCWYVoyaipKeMwlD3ItSSnzKmoxlb+7xF2psK/dVUX5s5ySMEkEnoAWbBPBOGL5/oC0qlarTlHkjClTcK6kvec5VlWhGKd7RShZuNnzO0m4yP58V2pz3nFVOSNklOFpWeqsua3wt66uyUT89f24P2BvDP7cdz4Rh+JXxF8XaJ4D8B+C/irZ2nw+8JmHR017x7410mw03R/GOs+LYZZNXtrTwnptjqFknh/TLaJdX/ALWl+16nHYw3OnXPi51kmD4ijldDGvkpwr4icYcr/jyw+IpUa0nFS93Dyarxi+ZuqoJxkj6TIOKsx4Wjms8thGOIx2Ew1GeJTvUhhIYiVevh6EZSShUxXI6NepaSeHkoKUZO6/jbvrX9pLxxrnxC/a08a/EHRXvtF+OnwN8S6h4c07w2g00ePPCmi+BLDwx4IspZSkp+F2j3Og6DcXVpIIvEepXEMjz3lqt1eeb/ACPjpZRltOvl2Ew1TFYvBZnxFgcHjY2o2jLPscsTmPJUcf8AbJ/vPZ8ydKNCqo+zc4o/rTJMNjvruH4PdVzwfEuG4c4ir1OdPkU+F/rrwD1/3aFWvacU/ayrQjKNXkVn9y+NviR8cvjL4o+P/wCz/wCKtT8OeH9K/bb/AGavhd8ZdU8TeFrfUIdZ+E0dh8ONLi1v4beC769tS/iWwuNJn8P2Ft4p1iG21fTtVTxTqcVns1PSLKy+cwlDJctjlua4PD1MRLJOL62WV6OIk5UcTTq42UaWOqU5STVSpHDzeJp0pXk1HkjGXvP5ilgcf7OWOjVlSq4hUMXKvJwU/Y8tWc42gkuWmpN0oKHPecudzlGLPzx8B/tD/Fz9mjxh+15p7/Fbwf8A8I/4t8QfGr9lbW/EPjWxtNI8Jxad8EfDnxWt/C3xKXRwyxzfFXxNrlvf+HLexXVrbw1qF14ou4I7IJYaTAPrpZHl+eU6OCw2WTprLcVg85w/s3F1lKpjaSrwcpzaeEVHDpuDTxNnP9576Z3Znmea5nj8DmuOzBclTLcuy7Fza96nB5hi6dOahBOVRt1rtRUldLmVo6+VfB34r/Em11X4wfDLwJ408JfFL4bfEP8AZOi+EPifR72/s5PEGv2WqeFn8aWXjG8v7ewvoIvGfwc1TxNcaJ4YDWos9emtb+LxMbbVLiYxelisnyfCYfDZliZywVanm8s1wao06lRUJOhi8tqYWMU6lSFHERnVcnVlzqdTnsoJTMcxzLG5rg6OJlUdXE5JhquX0PaN0Z1ms4dTDYhqpyKX+z8lNJ6JSSdpQcjw03WueF/Gdj+0l4403xFqd78Sb64+HHhbwv8ADnx9ceGJ9d8ZfCXRta8J3vxE1fV5LPHhKXUvDfjJ18+ws9WuLG/+1W0lrdaPq0sEfo4bDYPEU6XD9H2UKdOnisyxbqU/bVcNgs1q0sTh8oTo83PTowhUjGSk4uFNc8lOKDP8VmPENLGYybWGq4jGcMYDEt1YRjDG5fgszoYnGJuVpSp1W42jzKXtJSpqcI3f7x/8EE/2YtD8YfGK8v8AVPGXxe8Man8Pvgp8BvF/jTwZH4wjn0afxVo/xB1DUNJ+H3imzvbLVLbV9G8Ja3pOsnR7iwmtda0KV9T03SteGgXa2J+14CypZjxNxHVxtChGGVY/DYnKMXRp8k5ymoSxU4ptulTxFGFCnKnNRm05NK8Kh+ceIOY1Xwpw1j6eKcvb1szyStCSk/a5fhKWFngVNXveliMZiZJvrOPMmlr/AGi1+7H4gfnD+3f+wH4b/baudB1H4ifEnxZpXg74c/Df4qWGgfDnwzs0W11T4i+LrHTV0vxvr/i21kl1oafoVnozac3hnTbWJNSivJ2u9S+yifTrjwc7yDLM7WEeaUq1bD4GpUxcI06iSVeNOrTVTkveUo0qlRRTunJxurJtfQ8OcTZtw9PMI5RWo4etj6FLB1MRKkp1oUJVlOpTjKSajGpKMHLl95KN1JT3/jllP7SfivW/GP7ZnjL4haJc6lp/7Rnwj8bz+GrTw4semyfEnQvDmhv4f8DJOzmZfhVoN34J0hrS03L4iupJ1nu72OYXAn/kLMo8PZdWwfDMMqrUcTLJsVlVatKrCU8Jh5e1jWxVSVGco1cZKE5OTUprljCMZTcVb+tsm/t3FYOlwhLMaE8PVxeIzKvj40JQqVs1xCoxp0Vzxu8PCVGFpqHs3zu037zX3P418bfG/wCNPin9pH9mnxXrfh/w3pX7YnwR+DXx4v8Axj4Utb62174XRDwF8MbHWvhh4Pnv7SRfEWlxWep+ELWw8WazDDrVrc6d4rlmsmGsaVb2Xz+EllGHWBzSjl8adThCnjKVLD1UqlPMadeOOVKpXipuCd8T70XNPmUbWa5pfL1Mvx7y+ecU8W5TrcVUcBCjbklTrZfQwOIljoScVFPmg6jpp2cub3Lyps/OLwF+0d8W/wBnu/8A2wtPn+KfhGDw78Q9a+Ov7OGua54vs7XSPDVvZ/Ajw1450rwr480vRtxWT4q+Nr1tS8Kx6a2sw+Grq91+eWz08yaZoVqfsVw9lGd4TI/Y5e1XoU1meEVK7xLnmUVi8TTqVpSknhKMqrahbmVqd5ST5lvnHEGb5nmMs7xValXpVMNVyxtwnC9bD4+lR+sOndSm6sqDc7LlU5RjboedfCf4rfEyO6+Pvwp8DeOfCfxS+GXxD/Zg8P8Awo8RWE9/aS+IdWgi0JfG+nfEi5vbTT9Qt4fHfwn1XxLdaD4etltf7L16S0v28RSW2rXE6w9GKy7LMHVySVfL6uFxtLMaOOg8NJSwtOMsRKMsFUj7SVqOIjRvXlzqs7U4pxgud9mf4/MMflWYZp9Yp1quQ+zy7CzpuOHrVJ0IYiDxMIVXFzqYT2a9hLllRcqknFTfM14QLzXPDPjCy/aH8baN4j1bU/i/PqPgjwj4Q+GvxCn8Mtqni34a+H9e+H2s+PNU1ya0ceFm1zw7r95FatYWGrS2kl1JpV7bXmi6nK8frYaWBp4XAZVh61LEUqVN5piPb0KtXE0aDxkp08Lz06cYVq1Crh6lVTT9k6M4pONWDb5M+xuZ59jM8zGpQWFx8KmGo1MOqsI0q0cFQo4nFV4SqTcVCeFk7Q53VlVjJLmioxf7+f8ABA39mLRfFfxU1zXNQ8Z/FzQdQ+G3wk/Zm8WeMPCC+LFl0K78aaZqt7qWm+B/E9jf2WqQappPgzXdF1+DQ7ixuLXXtGgfU9Htddk0G8+wn77gTJMJj88xmY4nDxp1+Hse3l9SMVdrF0alWd9E1CUcTJyhKKfPyPW03L8x8Rc4xE+H+H6FStKpWzbD4jEwk3ricBhcZisHaba/d/V69GnQjCbU5KPPBSppTf8AZXEWKsW5O44+m58d+g6A9cBcjduA/bIW9+ytaclbq7Saber1dr/NaJpn4slZWvdpK+jWt5p769Py1dtf5Av2N/8AldI/4K5c/wDNgXw07/8AUg/8EuD/AE/Mjkk5p8sZJqVrJp6q+vM7aN79e+rXe66N31WsY3+N+8uXfsnK2u17Nxbf7C/8FIv2CPHf7aWt23iPUvi6fCPwu+EXwS8d3vhDwP4YsIZPGfiT406neXeqXd3rGs63FdeHdI8I6h4f8O+HfDj3Edlc+JDDfeK7O3vNKsb24uJ/luI+FaXFDpU8wn7OlhaiqYNJvlliIznKM5RvFcq5abnG7dkveTsz6vhXjOfCtDNFgKMKmNzGhPB46otZYfLqtOpTxGGhZOcKleM6kE/dSapu1TlUT+TjxHr/AO1P8Z/F3xH/AGqvEek/DzQtE1P9oz4G63qGgiG9uYdJTQW8IweGvgFaRSbvt3h7TtQ8MI3iDxTGdg0HVdYt9K06K51mAwfylUjkeURwuKVOk508FnOX4fCNuMVN55jqM8zs0487c6kIQhaziuadpTv/AFVljzi+YcAYuooSzyWVZm8wStDEYeOSYTEUsuhK65sQ3GE6rU5TlOFVzjzNs/SXUf2sPin4++K3j3wu3w70jwzL+3V+yT4Q1j4P3B8RRalqvwR0zSvDvxltdfi8bz7xYeJb/UtEtdf8XaavhuAQ2niiPw/4f1K3nsTqOp18hRyHJ8DhcDzVOaHCvGDw9errJYvC08TlkKNScueV3UdOqpc142fNzya1+UcM8jHN8wnCVOnLA5bB0J02p4f2uIx0Z06iSXJUg563WsHKMqbklUPzk+AXxy+Nv7Gn7Xdtb6pY+HPibd/B3wl8MfgtremaRFY6FB8Y1+O4+GmoWOuNqeqZi+G1/wCB7q3kvNXitJNRsNRn0W+tYkSxvolT6zE5Jw1xBw/iIUqk6VPOM2xuZUqsknCjLL8VmWFVNck26kKkqsYRqO04RacoOXtGe1medZznGGy2SjzLLsLRy9L3r8s6cZbpWjb2Sdk7Xb1SenmPw9/aJ/aB+Bvx3+BHxX0DTPBXiy9vvj18b/EfiKx0q6Wx02Pw/qHiDxlpfjP4LW73E0jTQ+NNf1Wa68EeK7pPP0mzstButfhlmsTJP24nh7KauCznMqrlzZhSwWGlRsv3OZ4LGQxbzN8skqdqKoRk21K8E41XHVb0c3rZxlGEyyl/umUYbFY+pO0ZfVcFXoYjC08NquX+PCUqalyx56qXI2m5fNHxbtfEXjHxlfWPhrQ/EHgHwl8BvGvxI8ZeJ9ckXSZV8OfAX4vy+LdL0v4dX2kJeand6xq3hfU9b0/wykWimeHXNCtrTVLWewmS0sl97KKeDymji5NwqyzHB5VVw1RrVZzQoTks3jKUuSSr1qk6tWq3KXPUd5Nc1R+Ws3zbOsgyqjCUoYzJMJxIsvjr+8yPE1cNKVJ6KUVh6eHwqg1ok3ZxTafvvwB1HxR8cfj74R8YfD746/H7wjeXnxq/ZC0H4e+IfFmmaDF4t1bxFeeFvGXhDSPGXhs3ltfxalZ2uleHvDei3ll4m+2y+L9K/tPw/wDErSJ9XW5nrqwmTZdGnlOSYihQqfWK+Jwcpw96Cw9apXxNWjCaSSf1mcsXB0bKKqRlFtycpeRHNsasvzr2jlGjgMMsVjYvalj5qGGimpXj72Gq052kru95Jq8j/Q4+Avwun+C3wq8M/DW78SjxdeeH216e98Rpodt4bg1G917xNrXiK7e18PWl5e2ujWsU+qS29rp9tdTQ29vFGkUgUmMf0flWW4PKMvynKMNNv+x8DQwWF5napLDwpxpKcle8pclOPNq7e77z1b/mbE4j65PFV5JJzrOUor3kmpS0bvrurOzaVm0mpIxf2m/BHxK+KHwC+Lnwy+EHi3Q/AvxC8e+DdS8H+HPGXiKHVp9L8PJr+zS9b1R4dFePVPttvoN5qh0d7GWKeHWTYTpeW4R7uPor81aNehTq+x9vhajnXSt7JwrexU37ySert713s3Za1g62GwuLw9fEQ9rShUp89NSUZVJQbnDDwu7uc1H2tk3LlVRuEkmz+P39uH9m/wCMv7J3xR8AfsOfBbUbT4i+DvEvxE8A/tIz+IPGP9maPrfxA1+3+FHjHwN/wrO3tdAsYrDwb4O+Hlz8P4/Gfh+41BNYv7a81HTgL+e7sLi+uf5p424R4d4PrVsXWxsaXtcgwVGv7SXJKhiaOPxlWpjop1G5SzhVI5bKPLeVOMoylOMWl/TPAvHGcZvicdxLnEY1K+HzDEfVYQilShRzDD0sHhcPCFnGjRweIm60IwtH2jbUYv3nx3wj+NXxx+FH7LPxr+E7+E/BHi/xB8APjhp37RPxB8Y3V/daPoPxE0XT/wBqfTPDWtfCTS9BtGfU7SbUNf8ADcdjoXim/ludM0/4etYW1/b3GuF8fmNbB8P4rP6GMq42NHDZjkuCy6ngFNOeVUcTg8O445t1YQVSrKEa0rQpJybcW4t3+kzfLeIK9bC4d16jr8Q4hzwGNlz8s8V7ao3hou/Mmp1VDljUbcYxjy+5Jnlv/BQjxF8W/iDdav8AtVaJcaPp3gj9pnRfgL8LvB/w61ZYJvFvw60vx5o/xCs/D/j651ezN9pmt6nHp+l2t94r8MM/9mLf6pZ/2Ze7bDU7eXfhrLMlvTySvNVcx4brSr+0XNU+uUqk3yRqUHO0JOFWUf7QjecU5JxbowY8t4mz3K8LmuASccvzelUnN8jgqdSnCVOfInG6jz0E4wcnaLjeUpc0ng/H39qT4u/H+H4D6vqXhjwlbw/BX4Q/tAeDL23uLnT4dT/aBfwDfaJYeKNSt9Msrtrf4b23i238MeE7nwno5uLsw6vJ4usb15fD82nXEfqrh/I8LjeI3RqzjUzfMskxvPzwawVR18dUUpVvixnspTnJyvTcIckoyjOVQz4UzzG5TjKVVQ56X1XKsCqDu44mlmMatOvHltZ+1jFacslHmcbNK7+fvHP7SPxC8dfs+fsp6p8Wfh5dav4l8A/DLxl+zz4t8R+HLrS5v+FkeAPFE2i3ng/T7cS6pbrZ+KPgzNbarps/9o2y2fiu0u77V7G+s5p7y2r0YZBlVTHZ19TcaChi8Dm+WSacFgsbhMPTy7Ey5Kbnb63SniarlFpqVSSlzpykLIs2rcOZvnEM4vUwmJo4rAZhCUnKOJwmKnHHYeFql0nQq08LBLVL2T5Um+U+evhqnjH4f6R4J/Zc8X/Er4x2XxhsPix+zzp3xDh8LWGk33gXwJdeG9evfAlprfiLVrmGa0vL/S9J8T+MNKgvtHsbuC8tBY6H48nbSG0W6X6PGUMBmuJx2c0ctp1Mmp/2s8vhBwjXrVMXhqlPFaQpS5r0vYvBVZv/AGKsqlfDN1rxfztPNc7yrGZPnMKk55hlvDPC+GoyfN7OrWWLzGLqu8n7kbqWNprmjjaLhhsS40+WT/sh/wCCDPwP8Xab8BNB+NGu/GrxB478N2Nz8Yfh34D8I614c0aIeH9Mv/Hmgaxrr6P4tgmGt3HhRvEekanPongvWUvY/Cl3dX1ho+sJo0Nppafp3hXlOW0snfEOCw6oYjOU6WP0XvSyytUwGDslFWnHD0UsRV3xFe9eaVSTPy/xQryw3EGKyZJOlFYLOFJ351i86wNPNczWv/Lp4zHTeHp3thqCjhoXhG7/AKCq/VD8wP52P+Cg/wCyt8ZPhb49+LP/AAUz1L4haN478Y/DX4ofDlPgz8Hra0Fh4L0X4V6loR+DWmXHjzUtZjuNT1TXfCfiP4jav8SW0bwhJpGmTSWtzGsupa3qck8P5B4m8G5bmmWcT5/isRNV8Nkbjh4XfLh6VLC1frNGLc9HmcoU7xSSbhFyhU5Yn614ecWZjNcN+HmGo0nhM34ljPG1kkquLq1sW4YOcuRKTWVUalWmpScpctW8Z0mpOX4E/sm+K/jx+zX8RP2Y/j58QNA0D4h2uoaD470DQ/Den6imh678QtW+Il78PtK1b4l6hrupRXFv4Y1ONviloF1PpUq3kQLeMby5vbie50e3X+e+I8JkWZxznDYap7LHZnVwNCcYqfJhsPg8rw+KeFjTTu+Z4VVXUVo81R2i4qpJ/u9HH5rm+QUMqknDDcGYaviJzUb/AFqdTOsTRVepok1/tsaLTcnypxUk0fW/irWPj1+0Z8O/id+xpbTeEfA3xJ+CH7Zeq/ELxb8V0hutW8FeNLHWPjN8YPE/hzStL8O3N+dd06KXWNP8YaN4tV5DJBoOkeHZvD8q6hrH2ey8/L8LkWHzXJ80cY1KGZcJ43A0acpJThKjlqUqtOUYqKkliI8u8ZStGcGk5S+cVfPcrxGDzPCRvHAZvg80clGWuHjjoYmcZL3k044fd7Lnak0z4E+Bf7XXxasv2S/2mvAMvh3wz/YP7S/hzxZ8WdNuZL2xWD4NaZ4av/g/4B8TXWnalJHDe/EHVfFWh3el6j4RtrqytrfRfFekzatezroVw8Ef0Fbh7KJ4vhjFU372T4t0a8VdVa0K8cfi17SLlKNFwVVRcVe+/LKSkepmGbZrj87x2PnFuvjMbg6+MnZ/uY1MuboNPlum6Eadm5JqLkruLZjeF/jP8YtE0v8AbR/Z58Q+FtG8UeDPHfw0+GXhp/E+gva/bdI+M/w81Btc0z4+6Lpdzq1lNb+GdKM8thrPhC1vv7bkuYLK70+5ezhUyd1LIMmw0+H8fSx2IwVTAxzWvKjCm5Kvl2Oy6dCdCs1KHOqGGlVnSrVKcqXtZ80IRak2Z7nuZZrWwPEC92pgsLk2XqEL2xeIw+aVakE7LX2lapRlKKbneME5NKV/lzQPGviDwl8Vrz9p3xTq3xO+Ffhn4h3Wn6b4Z0DwFFoOteI9c+LHgfwj4p+GPjW48NCWRbBdGudO8W37RR+LZrXw3r2mPrmm+KNNEclms3p5fg8HDK45Tl+Ew+arA0sfjcbiMXNU5LJ8zxFLG0VVU6deSdOnye0teCcacoTmlrx8SZjmGdYfiTE004SzTMuGacMtV2pZtgMuzDCVlGKWrqVpVW/3ak27NN3b/YH/AIIo/AHx18X/AIuaHo+m/tCfEXw1pN/+zp4L8eeNfCWu+HNG1WX+xPCnxo1N/DXg/wASaXqSWU+j+KfDN1dW/wDwjvjXT7mPxZ4euBdaDqr6roxnsJPqODOHMrzTjXO6uNpxorI5YbOcB7N8rWa4iFDL6s6bjZPCf2fOHKo+66kpT2dRnxnH2dYypwTkmKxEfaTx9epw9Pnb1y/Cwq5lSqNuDd1jeeGr15eXm5lG/wDchEwbzNhAJYswOd2GdxkZPO4YIGAvBXLEZr+hqV+Ry1lH2kpJtylzQcp8rg2vhlFJwSvG10m0pN/z5Hnc3Ofwr9z5KVOUkknZaPmd99bq7vr8Ufty/sveOf2u/h/4D+EGgfEuw+Gvgeb4oeH/ABT8YtRXTLjVPE2u+CPDGm63f6T4d8IWpb+xjqk3jP8A4RvUbiXxPHc6Jb2VjPdT6XqVxDb6dL5udZRRzrBfVZ1JU4OcHJxV5SSdRWsmt1N2Tdm73acbntcKZ5W4Wzr+2cPThVzClGo8GppONNunKk5tNt2UZTu0r+9a8WuZ/wAaH7QPgT9pEfFzxr+zt4auPDcHg79jT4IfFb4FaPr2usl9rVt4d8FeJfin4y1j433sNjBBpmr+LfiTovgK/hl8OWlrp9pZXqeFTqsjxJqNsP5Y4lyfhrhzNMTh8RUVWUuJ61aySjUxNB1sH/Z2WSneXu5XWdSunJOP7yUacISlzH9RcC5/m1HC0syfNDEcSZNGhicynKX7jEV8PiKGaZhBv4JTw86c3y1IvngpzqNuUn9qeCv20PiB4Gsv2GviHd/CbRrnwJ4EsfiX+x7/AGDYeJIxruteMrPQvg74d0f4vadJIYNP0fwjd39l4N0u+8NarBP4ht7HUvGGv2k6y2WnaZffnX+rmU42OcYaOIjGeJzWOcUsXKCqQVbCQx8amDlSlJcytinetGpZOCh7N80prLE4HN8HjsTXjCWIwmXZZiMRUtenPEZfUxtCVTH+3SmpXqx9yMlKLVenN1JOmlP87PG+tftCfsfftM/D/U9R8ReEPF2r+Bbr42/tkTahY6Oon1DQB4x/aN0XVvg1daNeTJawWutto/iyx0HxpbXv9qabpureG2uIZdT0y/u7n7DDYHI8+wPEGZww1LDLMVh8ir4JVqk4wr4RUMRSxkMU5KpTtUqRrzwrg4TlzQjJRmmtP7azeXDeD4fVaVV5dXjmOEx3IoKODxFR4eph3hIylGr7lOslW9rzR5nPlTp3eT+0j+0B8e5vjx8Qvjv4NsvBuh+L9c/aS+DuqeD/AAoL631Ky+Fmr+GdH0Px/Za3rupxyQR+M7TUvCek6RoPi+ws4Yzc+MLnV7vTbiXwy0zJrgeH8ky7B4SpjZSWGwmAnhq+YKmpRzGlj5QoVsPOpNOMI4apT5G6lWTUJckIxrJX9HLMxxeY4KhwfC0J5vmFTEUV8Lw0cLXnGpi4xVmlifrUarcVBXtKU5KUpLyD9qvxN4/+Pfxd+IX/AAhHw8174dax4z+KHh79qbSEs9R0KdfhtceCPDnhbWviw11dTX19aatpPieOy1Xxd4buba2f7Rq97BpOtaRDfG+v29HIMDlWU4LDYrG1KeNo4bAYvDY3loy9rjaNXH4qeBxMW5c7dKcsPhp885OFOFNRqzknTXm4HiLHVcuzrK6+GqVnUzih/q/Wnd1KOY4LC4eli6OlO162Bw2MxElTtzSm5cri5TfE+FvEdv8AE3VhbeD/AI1/G7TtC+E/wf8AAehaZ4k1eyg0PRdXvPDHx98Krpum/DTVSsuv6W/hi71nVta0WbUJLXW/Dsdzp+nWVjL4Fm0q1HUsA6GBoTxWHo4ijjs4qxqezcZ1YYrP5xoVo4iVNv3I8kW39pQldpxbODCY3MYYnO4VMbOg8cquc18NGTS+pYZ18Tl3u8y92f75LmSi9FG6TP8ARf8A2Uvg54o+Cfwnj8N+NviFf/Evxbr+t3HjbxJ4n1DwvovhK6n1rXdJ0SK/iutD0CU6RBfyXGmvqGsXGmQWVlqGuX2p6jBpdlFOtkv9HZBkOAyLJcoynCNxoYCU8Vh4yk25VK9bG16kLt3ajPFT5U7ycVC7TjJn8y5rjXj8xzKtKybqyi9YtOKnKzslZc1+ay0V2k2tT6aTbt52598Z6uP5Y/Tknmvck6vPO3Na+mjta89tP65k91r5kFaKX92K+72gjJuIPHykEdezMT+Yxj3ycEgVstJtq2sEndX0U76X/rzvqKSbjOO6lyL5xqOaa102j57b6n8Zv7RvhW9+HPxg/wCClfgCSD7JZ+E/ijL8SdE02SOGK+1N/iHb2nxI8M3un2ikImiafY+HJ7dpSim1igtJFYxPC7fxt4nZRPAcZ/U18GNxmMzV72f1zEe3crJ9fa+876PmvdpH9bcCZ79cwPB2az5lPAwo4BN3vbKoRwafNu7rmaeml7Wu2+GikNt4v/YMv4douNQ/Yw+NGn27Qn54tStY/jrp1rCVJ2xeY8pG4MWJMm/qDXwFOSvj4ttKpxRicba+t4fUr+n8JNeTSvrc+hzKLwuA4tktPqWIynBqSVvdxEpXad/e1k9d7pqz5bv4ds4rXXf2/viN4Y8RppV74TuvEHxn1XUdMu7SO7l1fXrr4efEr4feBJSJopbJYtJ13xxpl/AjJLcHVrfRrmMrNDHMPrazrYThmtCkmq+LzLCYbDTtFqMI4mhj8RySavCq6cKiUotP2brR1TbfFTy5YzAZZjqjdOlklLDYpq8l7f63mssF7yTtJNYlq0r7Lfls7/7K/gfwnrXhOT+2bW2ab4Q+IPAviLSr6KC1h1KLxN4v8V+OfAkm+6hjkuDp8mj6tq0NzYqxhuTcxzyI93a2kiVnGdY6k608PTlXhiMA8LiIaOCdOtRhQquLevJThKMX8UVNpO8mzj4qwOGrYxezmsDRaxP7uN4RqT+sxWqg7PmSl5t2Tvqfot+xL/wSA8aftj/C74CfGrx543+EsH7OOsftU+Jvjr47+DmseBvGmqeMfiT4T8J+L/Fnhc+HL/xPY+MtM0mG38XGwt7i1uI9NEemaTBYT4vpbmW0h/feDuBcI6eW8R4+pKviKmApSlSltqpyjzXfvXXMrXi4pKzk+ZP8d4z41zDD4zHZBg/9njluLo0YYiPx3wU6lnbla0umr3Tdk9I+9+1v7C//AAS30r9i/wDa1/ac+Ouha94Nj+GPxDitdA+AXwn8LaP4ljm+FPg+5g8M3HiK31jXPEmr6rc6rq2ran4djlkubW5a3ltZggW3jjisl/QcDkuGwGYYvMKCs8VQpYeKV3yU6cm4QTbsoRfwx5rJttK97/CY3Pq+OybDZXXcpPD5nic0dRtcsqtfC0cLOfKmnzyjSk3dcqTVruLP1+XvjGDtwMY/vZz9dvqeo5PNe3TjyQSe+t/Vyk318/va1erPAVndrra711s5Jb+d/wDgrUOgJ7D6ep9Tjt3PXPJIINW/T83672/Nbp3Z/Fx8d/Cl58OfiF/wUd+HEsRtLXwD8a7nxroWnTQwxajqkvj7UPC/xE8MaraWqEJHo1poPh6+aKXYvk2w090kMQEjfxp4i5S8u4y4qxtaPJRzBUJ5XFp8sKcXJ1VBfyu1RXX4Kzl/XXA2cQxMfDnF1KnPS/s7BZPi581+fM6WZYz2k5PrOVCvQcpPVpx0coxZznmm28d/sT30AVbrUv2B/iHZW5hdVdNQtNI+NtikAVjsgLiF0fDbmIcNwtfncVOOU8Sqo25yxWVyu3d2dDCqP/ktra6RTvax7ePi6dDNlbWnxDi6S3Tkpe2qxfa3LUWvayslGTfwlpkNpr/7dXxd8L+Io9LvvC91f/tIapNptxaw3c2qeLdV+GvxZ8BeAbsC6ieziTR9X8V6Vf2g2SXDavFpt8Ss8FvMv6Fh608Jw28RTi3N4fDUudqLjCKTq3jJ+/Gs5Ul70Wn7Jzju5Hj5jlnt6OU4nm5YU6mJqVVd/vKftKacGk9YytH3XdN2dlZp7f7LfgrwnrXg57rV7S2+2fB7xN4L1jRL2GC2h1GLxD43vPGngO4DXUUTXUuny6V/aNq9gJRb3H2xZHBuYLWVPMeLxNWjVnzNrNq2ZwlG75WstwtGupWb0a9tJ31kubRrmnfTjmCjm1Krho+ylSynh2E8KlZVK1LH5lPFXinZuVJ0733Saezv+i/7D/8AwR48W/td/C39mf42/Ebxv8Ih+zdqv7R/jH4++N/grrPgPxrqPjH4ieGtF8S+OPCNv4f1bxNa+MdN0eGPxI1hpt/bXcGmLHYaPp2kzRnUnubmBf6C4G4MoTp4XiPMuapif7O+pxw7+H2bnKcZN8ybVRVJdLq6u3d3/GOOuL8TSx+dZJlqjSws62Xe0xEJNT5o4XC4mUV7ra5KlNxu3ZLn5mna/wC1f7Bv/BMDT/2Jv2of2rPjRpXiHwc3w9+KFzDpHwG+GXhXSPEcMnwo+H08+maprWla5rHiPV9VuNV1jVNY0yO5uLy2unhmgBbdAjJZp99lfD2Dy3MMbmlJfvMZTwdHle1GOEpTpxhC8moJQaTjdtcztJ3lzfB5lxDi80y/A5TNycMP9Yr1ZWv9Yq1Kraqzaau9ZcqtduT6K7/XRCqjAwcEc9ePm456fw49s4IGa+i5Vdza3SV73252nour1fm10Tb+e5lKKnHVc6g7W/maldei79emjaArlicYZhxjOfmKkdeff1BIweSY9kl7N3t7Fzd/8Sqd+tuutld6NoIyVSS7SpLRq/wTrX69OXXynHdJp/xQ/GjwXP4Evv29/hXcuIbT4XftN6p4k+w3ECW1xqkHijxT8Ndf8HrY2W5pF01PDMep32nTfIg02FTHmMbq/jHj3KZZXxjiMFHaWKq4zS6v9eqVMY7aK6bq31u9XdvW/wDX/BGfLG/6qZ9NtTp5fTy67vtl+FnlSTad9qa2vpey6u1LqPl/G79nbWoJmjXVf2A/tNsIztkkeLw7oGmQFYd2IwkOly7VGCqRyTbj2+BownUweZ0NW/8AXyi1d9I4vFKd9XbRp2euqs21aXuZjShh8JiKDlyRw0I0nbSXJF1INXW9+RPX7rqTPzn8K6BYeKf2l/2vPBWtwaZqGjReLf20fGGlWd3ardXcHiSXU/j7qtxrK/azPbGCHQvDMkFq8US38Wq3shiuDHO6j7jE5jUwnDWDxFCTVXFVcFgXJX537THxpuKkndRcZ2Sb1u1JNJN+f/YscTisBiY1G8ClkyqpXUElm0ru12rtO/rq9Weh/s46L4SPwv0bxjqVpp9u3g+bxhpnhW9t4oLLUxe6rpUtxrmky3Uccd3f6bqum+F9K1NtJu3+xR3li1/BGL2WaWXmq18bRjLJknWpzjCrVlJKXJzYuM1yuSvF3k03G14ylFvldzk4xo0MRn9SVGX1TB0Pq6cY3jGfJWpQukmk+bl5tdU2tW22/wBTf2Dv+CKeqfHLwt+w78ef2n9e+EPjr9nuw8AeOPiXefs/z+C/Hlv4r1/UPi74LisfB8uteLLPxtZ6bFd6Bb/2N4ovbyz0uB21WE6c1lIxGpr/AElwlwLl+Brxzp1niZ5rlOVKtTndxg6GGlaMf7r51d80XzJw5XyuR+GcW8YY6pjs2ynAylRp4fPa9ahUpvWcKFbFQcmn1s7pPmT2bu1f9iv+CZH/AATo1H9gKT9pO61zxt4U8YzfGH4r6rr/AIJtvCmh63ptp4E+FFv4i8V6n4M8DzXXiDUtU1LUr/TrXxCkOrXsl3JFd3lqLxZ5ZJpGH2eU5Rhst+t1sOm54mrFzqWldxSUVFtxTtZRV7O0YwTk2mz4/M88r5pg8vwc3L6vgfazUdLOvWcYynyq9r+yhu1om7Xfvfq1XsnikDEFzGw3KQcqQCCuQCCCcEEZBB67lGCN2YdlKLlrCUJRae3NzSSurWs1/wC3Xb3Fs0l8Ti53W75KiW977a+vXe38RvxX8E3PgKx/bb+Et7IDa/CT9qbXbxrW4gjtrvVT4g8afDmbwpJY2efMGmDwzqutavp8jbAdJC7FFsrSN/FXG2U18o43zutib2xNZzwGuioOrinLluk0nHlVlbeNnzc1/wCy+Cc4o5nV4BxOHlzzhluTYDMpL7eZUKjjiJz1u5SdSEpN62ls7RZ139p7f2hfgtrFvMyf2v8AsF+B7y28lgWdpE+CWnxMkQOyMC10ieTBYlY45bnBDNXx+F5amW8RxkrylS9x9rc/NstE0132f80jTHQ+r8PYKmnpU44zPTa7/s2ml1el0urtfXWV3+YvgDQbDxN8cf2tfBuuW+m3+k2GpftheL9GtZ7VLi7sdel8W/FPX77WIXnS6haKLQPBUdvYypEt/bajd3UiXBguHWvucTjalLB5FSwjUbZVlXtJL43y4CjG173V25OaWj9zmu4Qk8q2XQhl2FzKMU8NhM0qZfUVtJfXKuJxleq007unVouN3qnzWdlJv1P9n/RPCUfwg0bxrqNpYW1x4QsvHWieF7m0jgstSafV7C5vtd0Ge5RVn1LTtRs/Dei6qmmXrtbQXVo19BEs013I3NjM1xUJLCRo+1+s1KM61VqMnRdCdS0lJ6x51VbbXS6d0jzuJ8thPO62Eo13Tw0cNgq1GldqOKhiHXaq2vaXPyxd227yWrvOR+r37CX/AARN1L4y6R+xB8ef2ptf+D/xA+AWl/Cfxj8QP+FCDwX47tPFOrav8afBmlyeE73WPF1r42ttMiufDlt/Z3ie5vdP0y3abWS9rBaLIkGrD+jOGvD/AC7KpU8dVbrPFYCnQq0Krco8jjUqSjzWvZzl7XePLpCzUU3+JcWcfY7McdmtHBtYeMMc17Wg1GTTpRw007vVyjScZJcys7NqTsfr7/wS8/4J2at/wT90T9oS18S+OPCnjbU/iz8VdV8ReGf+ET0LWNK0/wAG/C+y1fX7jwJ4IabXr/UdU1G80aw1p4dUu57uZLi/RrxZ5pZZZK+rwOWUsp/terh2/wDacRhZp2d/dp06ere90ltdW5VzNqUn8bmecVczoZPQqqTWU4TEYOEnJfDXxuJxj5Yp2Sc613frzaNNt/qsn3cenH5NIP8AP+PNfQ9/N3fm7vXb+tN7Hjb699fvcvPyfpr31/kD/Y0/5XSP+Cuf/ZgHw0/9QP8A4JZj1P8AknrySf1/Wv8AXdvUP6/rX+u5/Xrc2lteWtzZXUKT213BNa3MLrlJreeOSKaJx3SSORkYd1JGTyS1Jxakpaxakm9bNOVnrdb33801oS4Ramml76cZNaNp817ta/aet73d73vf+Ha/8P3vgn4e/tcfC3UbVFi+Bn7RXiqG/nRGS3l8RaZ8Tfg9p2jaZZQMfNeWDTpfEdxbTMZIpbHTnmWQIzlv4X4uy6tknE39gTi7ZnisVUTkk+RVsVisVyxbfuc3Lz8sbJNreSlf+1cgzDD5zm3DGeqouTFZZh6XNd2jUwWDlgLrW8W1hFC611lrdyR0sfkWnxJ/4J7ayIlWSf8AYp8bS2DSRo8QubDwl8c9P8uJgS7tP9oZFDfLsaONWJbB+X5KjocS4e96eI4hai3d35MZFOSbv5Wer13tHXfEuNfCZxKSSqYKtgo1o66881OPOno2m9U9Pe3TTv8ADOv6Ro/j3/goT/wq/wAZ6Fb6r4F+I/xq+G9n8S/t0zw2cvgnw8+m2Umm4ikiupP7ck1i10q9Ns0UcdjHcC4uIpvJL/cUq2Cy7JczxdGUfrmGwtChg4tTShiZ0m1WgovkU4To+1alpObvJSu7+JQwGNxeW4K65cHTqYzFYurGSj/s9PGVY++0ua37zlTV7RdtElfyz9nT9nv4f60muaM2haXofiPwNM3xPsvFun2c8Gq6Db/Dvxda6tPZwBJohc2niRLux0TVrW9hkiuNDur6Hy0u3tbyD1avEGYTy+nKVSg/a1sVTrQnCm3V/wBijNu/svdvNKd4+9zK3M4ud44iymjSwuFeX1XBNxT9nJwUoc8/dkouPPDS/LNuN22k22j6n8O/sM/tbftWaT+3NZ/sqfBrTPHX9vaz8Pfg5qfi3Wvif4L8CafoGp6La6Drmo21va66ftl6ljZ3Wnavd31hbyeRI1sLe2urkyW9fV8G8JZrxVgcvzWvVp0sNCXsJ1WrKtTw7VPlhFQd+XlkpqKTTcdbSTPiuI+LafDdTLMFUhGrisPl2Yr2dO0XBY54edH2jUo6VFSclF3TSSsuv68/DD/gix46/Z+/b6/ZIvPhPp3izxD+yf8ADvwz4R+IvxN8W/Ez4qeF/EWraL8X/AWr+LtW0Dwh4S0DT9F0DVm059Z1621RdUfTZ4pYVaA6lFDbyRN+vQ4Ow+FzXIsbl/JChluKxOJxEJpydWpWwdfCtpzc21pRko6Rg4txblJuX5lT4xqYnA8V4XM+adbNsnw2CwbpxlGNOpDO8LjHKrySjFzdCjVhzy5pcrjDVe6/6g1GN2R6YPrksTxk9zzzzkdTk19xZXvZXta9tbaaX3totPTXTX4X+v61/rzepA+A54ySVOeOoDqOvPQsfT3BJNEYJxq7LRRvtpdtp6aptJ2va/Lq2pXynamuflUnOrGKur8r5JpSSb0fu7rWzmm7JM/nf/4LBaBd+Gf2r/2K/inpWnx3l74y0P4q/Cqxs4VZbvUfE0HhzWJvDwmmZfLj8geLJbey3kPIbu9CbniSvwPx1ympjMHl+JjC8KU6aqSsmpcmIdRRlpqo35lF6e9e122/3PwnxUY5Rxfl05Rbw0MqrYWLScnUrYx0aqTu2+WEYVI3futp3blp+UFva2cVj/wU20O0H2iPQPhXqupCeBVIeI/Hrw/4xuJ0VwFb7RJrbTSzgZ25dTkBj/OM6n1evg8Q4JqWa5VSTaTvDlxEFG99oqGkLtJSSsrI/oKliI4heHMnJ/7LVzem22n+8WKjUi9ftJUJOLd5WbSd0m/Cv2u9XGmfsqfs0y29qbmz8O6P8DtStbO1McTSXHh/4beKtTit0eRhCrG/R7Iu5EKSvGszhd2fdyFcuf5lUk4xlZYaVRp6OSbvKy5nGPOmkruy91OTZ8thaXtcbVpNcyjh8VyrVq98U9LtrfVPTVy1bjK/yJ4s+EXw5h0/9mP4q6/4L8Pz+IPHHwt+Jfin4qRSRT3ZvfFEfxc+N8OmaabiZmiVNO8FweFNH05baKGOO1sbSaSJ55JrmT6PG5tiJQw+VYCEaNaOLwcITUVZyVSnTqVG6kZTvXcPaKMl7kqnLHltY14byWGHw3FWPrVLrA8LrF0ubVRqUMDjq1PlVrKUH7sWrS3afMrr6f8AEv7L92uofBb9nn4ZeGT4t17xz+0bol54R+H8WsWmgWltBrujv4/vPA1t4g126ni07w9oWkeJru20241K5mWy06ztrV3kktVz6HDUc54qzStg+fDweJw9SMpqMYucqFedCVVyjD3G5QtNRXLaDuk+Zv4OrV9jkXFGOqSlOeWZbh5UlN8znUr4/BVuW873kqdd8t3dQvG/Kmj7j0n/AIIh/tY+JPhl+3T+0Z48+HviXwt+134h8eadrH7MXwq8IftB/DyTwN4s8O6ZbeHLu5/4T2+TSJtN06S88URa1qsajxHZajf6fFb28q2s148LftuW8BLB8JxyupUcsdDmvNcrg3KE6NRxja0lOnzuNkmpODs0uZ/nWP4+q4zMKcUlHLk6bqLlcavtFOUoqLUrwhFpWjZq3PFJXlzf0yf8E9f2f9f/AGYP2PPgr8G/GVpYWXjjQfD97qvj230y9ivtPi8beJ9c1HxF4ihtbqBVt547a91J7bzrfNvK0RkheRH80/dZNl9LKcswWXU1ZYbDwjZaK925tpaXlKV3e7u23dvmfxGe5lVzfN6+Ory5pShGnSlrf2NNKlTTbbbtCEbXbsnaLcVdfaVeoeWfJf7dHgiX4i/sb/tK+FbSC3m1Cb4V+K9X0f7RxFFrnhizl8T6LdkgMS9hqei2l5GhBDyRLGw2ls+BxHgIZtw7nmDinKWLy7G4SyvdynSqxjpezknez1a1Sb1PouDcxpZTxdw5mVWShDA5tg8TKbWkY0sVByldO6Vld2dmpXldRUj+PfVdSiv/AISfsceJWj26BoUek+HdCnLMIru7j0z4Y6nqDx4PNvNcfCa7hlY7XMttKChkWYL/ABFiE3meNwCT58LTxFSVR35pONCtRb5r30Wl3qk2notf694dcJUuNYaL+1MBh/ZR6XjmWBxMlFXsl+7cpWWrbe+r+ovDs0ujftj/ALa9vGy27y/E74WQiR41SeRtR8UftValI8ZOA0kSXVuUY5JZkdj86sfPwcE8v4EV3zKnjU1f7H1fAdNXupJr4bcq11PMzOCWWRldf7XRw6Vm1Fqm53Vk2mrSi2r7WV2r834Q/BH4Z+F/iz+z/wCLNI8ZeHbS9j+DPwg03VfCEt9L9oijv9U8W/s8za9rEdpHJGtrcaLY6hFoSHUlmtZhq948Kljebv0vH5pispy/L6WDxVP6xjsa61SSUeecP9rU4SvB3jzOzV7tWinZcxEcl+v5/hK0pyVOnjcqi1zcsZKGTuC5knae2l79d7Xf1t8CvhR4E0f4aH4m6No9p4WmsPh9460TWp9Pjza+NrC/1y6vbCfXLWeZrSTWfDo06PT9N120gW+udF1C4sL24fT4bPy/LrZzj6+PlDH044h1sfTeGqRSX1aE0qTjaDjF0akfdcJRcYcqUU1KV/Jzig8JxBiFSqwjQjUoOdGyUKvLiJtckUnGMlbm5lZ7O7a1+t/2VP8Agj/+0L+1+f2G7j41/CfXPh1+yOPDPxa+JXi34j+EPjV4F0vx7qKfEXwRa3HgKbRvCo0/xFrdsde8SQ2Ot3lnqOn+XbaNdyefNDcQtb1+7cI8AywVbMcyx+JjicNmWEounTgrThCUHenKMYRUVFfw0pOHJyq+jifk+f8AHUaMc2wGX0p4bERzRNVKj35KmLjOcLzm4yTatJpScpR10vL9q/8AgkV+wB8cf2TPi7+2N4++Oegy6dba/wCNtW8AfAHVdS8baB4w8UeJfgvB8SvG/jGLxV4ouNAjhs9OvfEMV/4WnGlG2s57K8t9UjbT4VILfbcO8PrKsVj8VPk58VTp0fhjrTpwjTh0v8NKN9XdtySvG58XxBxHPNcgyjK9W8HUnWnrLScqs9knyvmi29FdJrVRev7uRqAZMeo/VmHr6IP6kkZr6enaMPZ3u42vq3ZO6W77LTtqujb+XS96T6NU7esee7t8077673uPwMHgce3+9/8AE/qOScmq/r8/P+rvV63LLyvte2u7/wCA+vTS/MfydftdeBbrwx/wUX/bO8FaRZwLJ8aPhN4U1nTbeDf+60Hx14a17wf4m1G6YIqxi88ReLvFE0rbmbzZVRzs8vd/JPjJldSXGmX0GrYbFSjjZVNoqtGpOb1/mlKnvq39p3sz+mOCMzWI4ByanLlVbLs7xeG5Uve9hg/7PrUt7+7OM7SW0lzwasmfB8txY6h+yL+zxqdiFeGH9svTj5roJTGfEl7+z94h81nc5jdIMSIqkbrbfJyiOT+a4ObrcSuEnywc+SKjaMXGjSqUeazfKnUcbye8nJuTk7s/XM9U6OYcYQw8VKFTgnAcsdLc+MweUYmUYxaslGTlaPfm0u2fO3/BQvUbuX9pnSZol3jxZ+zv4y+H9xdQXEVkuk6PrXxr/bS0vUdZtpGUMx0O1vJ9YaKJ/tc81tCthOl2sRP0fDeLjRyPPKTpRqOnxHXai1aLnHB4CUXJJf3bu97e7dtJt/FYDLq+c4XMp39nfKMDBNaW9hmNerPltrG8XqtNHJdXfzyX9mL4M2H7Tfxt+Fum/D/R7XSbyXxNBokVgL2z1HwemteJYo9I8QeHb1boX9jr3h211AX+m3bzlWEUNjcJJpT3FsfVq51mdXBpV8RTrRfs+eM4rkqRg2+SS5LJS3fLrG7mmprUxeWQw3DXPTqOFWOaZWo1oOUasYy+tqUY1ItTipW5pRUuWS5bu0UfUnhT9mb9oj4//HH4x+Gv2bPhZa/GDxR4M/ZkvdD1i6uvGPg/4e2en3nxGs/G3g/THe68RXEWn3UusxxN5dnaStNFY6VLcCdSIEb2+FOGMy4mpYirha8KeIoYlRnNpujDB3U3RjFrllOMqikoyi5te9GTabfx+b8QYXhnAZe6q9tWWa1cbTpJvmfNl2JwyrO0oySlLmUpXtdNSVnr9oaH/wAEEvjN8MbT/gnhoXgPSfE2vW2uy6VqX/BQG18XfGTwhrPgv4eatB/wqTWfEMfw70+DQ9E1PxJbavc+EtZ0SyNl/akFs9vp94jRvdG5b9slwVhqMMslheSOMo5lleOx7Sk6NT6rUk58kZ80YRkpVlGKirtxblzRV/zXCceYjEZhmNfN03RrZFxDl+DhTglKlWx+BqUMJzunJuSp1XBwcpSjTvUsrNt/2GDO5sjA4wTznB7YPA9jyT3r9Asuy8tP+D/Xmfnf9fn5vt+K3sx1MP6/Pz/q71et2Hgls8gYwTx9489fbj8ecjBTTcbLR3WvWycrr0d02r9Er31DmaUoqKd7NPzTat9z77X0bdz8OP8Agpd/wT6/aB+OPxs8J/Hb9lzSfhvqd94s+GfiH4L/ALQnhfxn4uu/BF94g8NpNLL4F8Z+G9ai8K+KdPudd0PTdX8XeFtSttRtLW6n0/UvDVxb6mItEFo/5zxzwBQ4rqYfGYessPj8OoqFZxackm7RnKLu4WiouGzSWjkpN/Y8N8YYnIaDw1SVSphoTlOjBVGlQdSUXW9im0oOpKClKV7txSd3FN/mHafsAf8ABR3wx4g/ZRtfEX7MU/iUfCPS/ix4Y8b694I+Knwk1rw5F4R8W6p4w1bw3FozeIvGPhDXL+7tU8aS6dqtiNCR1l0cvYzzw3sMo/Jqvg1nmFlX9i8Nieb2lRaqLniJL+LK8G7SjF8yd5WsuZta/rmY+LHD2cUuJI1KeIw0M6zPL6tKnTi1ChQw9aTXLyyUYpOTfTld9LvXm/2Qf+CPn7UPxa/bZ1n4sftPfDX4lfAb4EQ+GNR1bTtas/iD8L9N+IWvfEaT/hXGoaRZv4d0q+8d39vo9h4k0HX9Vu2vbewFy8dgjy3VjcNGfueFvDlvCUKXEeBdVUp1a7UcS7067jicPCpTpujenL6tONJzTu022t0fK5/4nShlWGy/JMcqfJCnQqRxGEUnUpU8ZUxFONSrKqvbcleNOvTUk3CXLJWaUj6j/aR/4IU+Kfg38N7/AFr9gHx38VPiP4+1rWvBtp4j+Gfxi+IXw3svC+paZ4YvPiD4i8PeK7bxbe+CtK1HSNT8OeKNe0iLUrCxvDDrXhwXcRsZtShhmPu5j4acNzpwWV4SrhsSqtOVWdbF1q1PEYZKcZ0qlKdqcn7SNOUW17rdS8WpJr5iPiBxFjZ01neKw2Mw9N89PkwNKniI1lKfLN1o1JTcJLmcqb1lJQm2nFJ/vp+yB8EX/Zt/ZX+AXwIuDC9/8Mvhj4V8Na3JbSma1l8SQ6ZFP4lmtrgqrXMEuuT6hJBdOPNuIjHcSDzGcj7/AC/DQwmBo4K0VGlSp0YpJKKUbppLm2u7aaNW2SufHZnjauZZricdUnKTxFedWpKUm5T5pyUXN9XKMbvm1vKSlJyUpP6QVFAHyjOBngZ/5adePp+Y/HqSSjypJR/lS937r2/re+px2V2+rXK33V3o9dV693vrd/Tp/nr7/wCcnvkl/rv5226/15j22/rfz/q763bQ/db6enu3b8P1zn5c0XUU5N6Rs29dk538+34663ad7NpXaWi76y/RJ/O27Pwm/wCClv8AwTz/AGh/jb8ctH+N/wCyzo/w21R/H3wn1r4O/tC+GPGPjC88Dapq9jYrexeAfG3hnVY/CvifTbzV9K0PxB4q8Kajb3sFlcyW03hS6i1JrTRzan83464Bo8WvC1oThGrh1GCT0Tpc0+aKfMnGDTacVo43s+ZyZ9vwlxnW4eVOhVjKrhsNiljMLRbvHDYmWkq1GDbjGr+6pP2kffsoJyahBn5pJ+wF/wAFH/D3iX9mWLX/ANmC714/C/wP8X/BXjbXvA/xR+EOt+HItD8TzfF/UPB8Wht4h8ZeD9d1J7ZfiRp1jqNquhRSQ3OgXTQyXEF3bXDfkeP8GM++p8UU8N9VqxxmOympgZTzKpQryo4bCYOlV5aawtZU6fPSqXhGo7pRbabal+qx8WMjxVZ1MZSr2q4epKvSVKUqH13nqRp1/Z3SdWUIq9X4velrda4f7HH/AAR1/aZ+LH7Z/jD4s/tS/Df4nfAX4GDwz4i1Tw7qem/EH4Xaf8Qdf+IF/d+ArzRbe88P6TeeOr+y0rTNQsvFWpXDXlvp/n3AsI7hbm0nSv0Th3w5nRwbwGf4PDVMFKnh+WnhsZPETVanSnSvOnLC0oxhyVJcz5uZyUUou7a+VznxJqvBZZTyKtP63RdaNeGOg62HdCpLmd6dSfI6nPCPK94RlNJpv3vpT9pj/ghb4x+DXw5udX/4J/eO/il8SvHfiDXvCUPiX4Z/Gf4g/Dix8MXVp4Vg+KWt+FvGVr4wuvBekatpN7oXirxPolnrWj2N7JDrnhgXLCwfUrSOR/TzTwy4bxGCjRweCxOHlQdd0ZYWpOE08TTjRxDjJNKPtoUoKbSUpK6nKUYpLwKHiPnWJzuljs7xuHrpOHtL0E3ywqSa05583Zq7Wq/vX/oM/ZT+C1v+zr+zT8CfgZEkDSfC/wCF3g3wdfz27tLBcavpWjW0Wt3MUzqGuI7rVxe3KXEmZbgTGaXMhZj+jYOjHC4XD4emuSNGhQpJWs/3VN01KVnrJqN5O7d5PW7cn8Li8RPFYnF151J1HiK9Wq5Tk25RnUny3u27Rp2hFNu0EobR0+gdiYxtXB68DnGOvr079s8kEg7910bu/N3vd66u+ut3fq3qcyio2aSXKuWLXSPZdl5enZWUKo6Ko+gH0/z/AF60dLdO3Tr0v/V3vrcSUU1FWTd2ltfva4bVxjAx6YGPy/z9c80a6677+dr2vq/13er1uKMY25Ula9rdLt3++7+966u/4E/8FK/+Cc37Sfxk/aA1P43/ALKmkfDPWbT4tfCCf4b/ABy8N+M/Gt54J1b/AISnwzY63pnw6+IXh28HhTxJpWrXUWgeILzQNUtrz7DexTaP4Pu4r97KzubZvzXjXw/pcT1VjsK6dLMGqcZ1neMnGkpU4XqQamlycsVbVa2lZ3PveEuNanDscPhsUpVsFh8WqtOm3FqnTqSqTrQpxeiU6rdWSesqkm7NxufnhP8AsFf8FEND8dfA27139lrVNcsfhf8As4/EP4TeLNV8FfEv4Ra/pNzN5/xzv/A9voZ1nxz4Y1zWHn0/WfhxolwP7Bsntr6LVFRHtbZbqT8lq+DvFWGpyp0J5fXjPFRxs6yn7OrVr3latJqnOXt4zdWcqrblPmSbclr+mVvFXhPH0uJ+ZZjGvjMzyupg4ypOtSp4WnLM3jKcIOqlShVUsOpw0vywTTcbs/Ya/wCCMX7QPxN/aa/aI+K/7X/gv4m/s/fC3xh4d8fn4fp4Y+Ifwxt/HeueIfiH4r8Tyal/a2maJJ43udIsLLwl4x1+wWHUDYyyXsqPPA7CHb+j8PeGWXfUqdHP8GqrpVaNelRjXcqNKrR5VBxjKHKvfpxxClGKnCpa0ld3+YznxTx0cLDCZDVhTpRUFJVcFayhOdSm4RVVJyhNqUXdqMm2kpe+eq/tV/8ABCP4ofDXwL4U8M/sD+NPH3xFsvEni7U7Xx54R+NHjz4b6dpngbRte+HXjLwBeePfDev/APCH6JrV9e2th4okurnw1Hd3UN7qen6ZqFtBb3im5r18f4cZVVrwxGCUKEkuWpaK5qkIyk1CrNNOom4xbulrdvmaaPmafH+Z4x1Y5nzVnOMFKc3J6xbakoSc7K6TSu+W0FZWTP6d/hn4G0v4afDnwJ8N9IWH+yfAXg7wt4O0zyrdbeJrHw5ollo9tItuGdYRNHZCXywzbCzKWZ1Zm+/wdCOEw1HDwjyRo0adGLjonCnFQVkto6XUXs29rWPiK1aWIxWJxE5c1SpOU5yu3LmqVKs5XfNq31a3T1baTO4CKOiqOc8KBz6/X9fc1skopqKSTd2lom+9v6+b1Mkkk0kkm02kkk2tm1fVro3r531HUxke0Zc8lhtwccjO/oeuDhc+nHJJJOcuW8eaSsn8Lb5d3q1e2lnvp7zu3dIlaua2aSXNs7SbbSd7pXV7X1f95pv+fv8A4KR/8E4P2mPi/wDH/wAUfGn9lXRfhlrOmfGb4SL4I+M/hzxf43uvA2sW3j/wjY65pXgX4heH7j/hFPEWlatLd6BrFvoepRXLWN/b3Wg+H7030tpB5C/m/Gvh9HinMcHmEKlP2lB0oNVm+T2SqNVErQnL3oKF4pXbi4tuyv8Af8GccvhemqU+eUKOI+sUXTnySp1pNP20G5e5UTipRmvebcU3eCb+CLj9hL/goloPxF+EOs67+yvrWuWPw4/Zi8WfCfxPqXgv4k/B/X9Lu9X0ib416p4EtvDx1fx34b1zV0vrWf4UaG8raDay2N2mr+ZA8FhHNN+Q1fBriXDZXmeHwk8DOrXzKnKFT6xUU5YRyw3PS5VRc3SVqilB+7JcySbcr/pVTxP4dx+ChRrrFU+XETxVOEU7U8VOLpyxK5ZJRqyiop1lZtWi5NXZV/YP/wCCLXx4+Iv7QP7R/wASv2xfCHxN+AHwz8YeH/Glp8OLfwn8RPhpbeONe1Xx/wCJ/HB1yfWNN0Z/HE+iWNt4R8Z6np1vaahLZTC/ld7m0kkitXH6nw34cZbSwNJZ7lsp4ijToKLhi5yUVThGl7OF6ScKXuOUaaS5YySvqfLcS+J+Oqyw+D4ZzGnTwNKNOVbCYrL4OhPGRhy1cTOEqvLWq1JSqOpXa5pyqTk3zczfq/7Vn/BCP4qeAPCXgnwb+wn448efELw/4p8Xa1Y/Ejw78ZvHPw20+y+HOieJvAes/D/UPiD4T1iPwfoet6vdWWl+Ib3VJvCq3l4l1rWmaTdWUVrO7z11Yjw14fniMLXyyjWoRpur9djicTVxCxKlJOinGouX93aotE04NJp3bPEo+IWdYrEvEZ1iKVepSw9DD4SeHwsaDo0aPPGFJclRv2cIuPsad1GkrpWbbP6g/AvhDSvAXgnwd4E0aGOPSPBXhfw54T0qJIhHGmnaBpVrpFiEi3N5Q+zWUeE3NtHyljjJ/SadKnCjTo31pxjFNvVqMWn1v73Kk99JW6uR+eVKlSvisRWloq0pVJpaRc5TrTd0tL3a1euqs22zrdic/KvOM8DnBOP5n8+pqnCLi4NJxbTaaum42s2m3qrKz321dtTv5u783ZK787JedrK7tdu/z/P3/wA5PJOSaD+vz8/6u9Xrf+QL9jT/AJXSP+Cun/ZgHw0/9QP/AIJZ0Af1+HhWPt6/9dB19/8APPNLo+tl9/x+vbz3e9xPRN9l9/xef938d9D+VD/gqb8Cfif8Jv2o/it4m+H/AMIfip48+Ff7X3w6PiK+1v4e/Dvxn4+0D4fftA+EPD2teDLq78S2XgbRde1PRf8AhI9Lv/CviyxvtTsYNLnvNG1Vba7fUptVx+HeJHA+MzHNMNxBgY/WatGpGUMPGk/aaYarRa9tzONm/wB4nKOzlCzer/XeC+MKGFy3CZbiqywjy+u3SxEp3TpTxFWtKCptpxcnUcW+ZWum4trX86LP4qaVbfEL/gnnp3je01/wLq+h6R8QfhNrvh3xr4d13wf4j8K6LL8R/HqaTfa9pHiLTtOvNJg1Pwj4y8P6jp813BHYzwXVy1vLItldlPxaHBXEeErSoYjAY2coy/tSoqWCxNWFWTqqToKpThKKqOVFq93Fc8W209f2XE8U8O5hhuM8ZhcxwOHjmLwNfC0q2NwsKkJrEYnmo8s6kJTcIQpR9rGMU7xShaNzwH9n74S/Ef8AbJ/4KU+E/Anwc17RLW81ew0vx14h+I2saP4o13wV4dsdL8EeC/iTqOn3mp+G7Nok1PUNZ8O/8IdY299qFlF9qur8NctqUSWr/fcKcDS4iw2NwWPwmMy6lLHUsVUnicuxDjKlh1i4Qoqc1RjS9p7bmc5Sa0hHlcld/MY3j3D5DwjNqtg8zqZhh6+SPB0MzwsK1H65VlivrqUVWlWjRWE9m6EYRb9tCftUoNS/Qn42f8Eov2zP2M/BHxk/aHuviD8FPid4Q1LwjrvhLxlofgDRfivY+O/D+l/EHx/8KNOs/FHhjRE8K+LIvFcXh+Kx1h/EmjSPpbw6BN/aVlqkckF0h+ozLwdw0qUJ4XHTqTpYidaNFUIxhKNWjUozi0puXMklOEk7K9SLi7xZ8NPxPhj4UMMsvqYRU3G9SWMjV5nz6NpUafKvdV1v72rspJ/uR/wRT+G3iTwn+w9Y+PvGPh7VfC/if4+/FD4mfGm90TxDo15oniHTdI8Q+JJtM8L6frOk38NvfWcsGiaLZyWcd5Gt1/Zs9i8ipxEP03gzK5ZNw5hcqq0nClh6uKlTpNrmSqVpOUpPl2qzUqqi46RlFXbi5v4Di/Mv7XzzEZhQmlUnhcvw8py/eQf1ahKCajeOri+V6taNWdmfriFwxJwcgAcHI655LE46ce5BPGT9NaW3N7qfuxWm1/id3zbvtbTe8j5uMIxvLlXO7c0+6XPol0V2n999Vdvqihmw5JyOoxx0GDkde5wfpnnPNRGLTq+82qnLZfy2ik387J272u3bUsrNSSkrprTaSur631s38nvfU/NP/gq18AvF3xo/ZI1jxN8KvD2seJ/jR+z34p8P/H74R+H/AA1GjeJPFGu+BZ7ubXvA2j73UyXnjbwpc61o1hbozSPrkmj3NvDLfW9op+Y4xySef5Bi8BRajWahKlKUebVVHzuzabfLFSVmnZOOrUb/AEPCucvIs2p4uo5zw9R8uKpKahGpH957O7cWkoVOSaum7X6uJ/LPc+KvEehyftRaj4p+FPxf+F/hf4t/sueKdPW/+JHwW+K3gXT7PxN4c0nwxPpPh28v/F/hDR7H/hI/F3/CB69rVjp5uGe5luLXTImudTYRn+V8y8OeJKEcLhY4OrVWGzPDY91/ZyUa0aEsTeiqaUpU+ZVYv2lSTXMpNKXLI/pPJeOsgrYPBwqYmlTq4Kriq0FKrByTxVepUSV3HllCLcbq7lePu21fy7+078TfDXi39kn4FWWj6wmp6g2geGbIeGdO8/Udfklk+In7TngxTb6Jbwy3szwaHoXha7jjSEpL/benyk7JbY16OR8M52+Jsz58tq06dXMqFeMpRqOMacMLg7xleEOfmqQqKVuVRtzXlGUJEYfiPIqCxeKWZUqtShRrU/ZRcYyqSmqlmp+0lyNe0i1o9XFatu/6b+DP+CH37aPx6/ZQ+AXiK0+NfwG8F6vr/wAI7rxhb+F/F/hP4sQar4a1H4l+C7bU9M8L6wwgt7q2bw3f38Nrr2/SbW7huJ9UEdq1zbW6zfr2H8KKNXNqeb1szVvrOFxf1OODd+ajiKlWcHWliZO04vkX7r3XzNtptH5xU8W/q+EzrL6eUVZQzDB0cs+sfX4rlp06WKw86jh9V95VlPn5PaKytFttyPWP+Cfvwa+N/ij/AIKzT6H8X/A0+ln9l/8A4Wn4u8X6vpmk+L7n4ZnxTYeF/B/wj8J2XhHxv4m8HeFB4kGrSXlv4x8MRW9j9sTw3HqbTvutnuLieC+A5cOcR+9OVaGDoY7lxCh7ONf65mNbF0mouUuVUo1vYuLk3Jw501B8svns64upY3IcVhcPCVGePnhfbxdRTfsaNKMJU2oxiubmoRmnK8UnGNnJOR/WoiZUHI5AJ+UZJy+DwRjOMkD3GQQCf2NRa5bScVFJOLs72c10sle3bts4s/Mormjo1yO0npq5PmvK9+8E1v2u0rj1TaSeOc9Fx3z6nPtVWV72d7Wvfpf08l/wba1FSV+eSk9FBpNNQ97R3k7vbVeatomPoKKN1aW15b3dpeww3dneQy2t3aXMaTW9xazRzRXME8MgaOWC4iZ45opAUeNnRwVL1l7K8I04Nrlr+1k0muZNz5o7r4k5JvVWvdOzblyV42tzJSjfTS8lZ2Tvpbvd6O6fNzfw5ftS/Aj42/s8a18U/wBm2H4IfHrxL4Z+DXxin8TfAnx7ofwi+JHjPwd4n+DHi7Udb1zSItL8U+EfC+saIdWsT8SdU8K6np97d2mr2uveFNduZLSLSr3R5Z/5p4m8PMywmbY3F4LB1sX9c9vTjLDYWpUajUjWadTkuoxSd7tq7vC3PI/pTgjj3Kq2KwNDH1oZeq+Fq4atVnUVSMZ0cJXqczjJwaVSdJJJzduZXlJ8rD/he3gW4/a0/a58X3fiS30Sx1yz+C/xCjm1CVtMlglnb4X2WpaVLHfpFJDqOl618cNZ0u60yZEvtPk0nXobqFZNJ1BV/PaHBnEFBZBQWV5lUWSQnTqzjl2KtVqVVCk1FezfLyxwntPimmqlNKaabfqY3ibKcXkWRVKGOpupTxeJw9SjeLl7JfVIrE/HdRtzvktfRrnbXMeLf8Eov2C/2g/2z/An7VTfDfxj4M+HHhm08J+Dfhgmu/Ejwt47vLXxFeeJBomo65P4alsLW0srq28Oz/DHSmup7a8nka7vbH7RbRQPazt+tZV4VYfPaOWZhicTUwH9nzxPtMNKiqsqzniK9SlUcvaUvYO1VqcJxnOLvFtNXPL4i8UMFkWY06OCwf1795gMU6tPGQpR/dYKWGq0pJUa3vSk1OLvaPvRlduR6x+1V+wl+2R+xF4K+EfwT1+28G/GOP4ua78QfB/w08RfBLSfinqlxaeJ/E3hzwf4W0ay+I2h3vg57Hw1p9n408R2mow+I5Nfm0u58NJrMl7pVm2mXl6enGeGOIwFSFTAYiOOjj/q1Culh5ReEWExFTEqtFurJtV4yVNRtzQlGU3KacYr4upx7hs5xtXGVsHUw0sK6denGWJjP2spSqJxf7qK09nFq2i5ndWbb/tm+E3gSw+Fvwo+Gnww0xv+Jb8OvAHgrwJpu4Bm+x+E/DWm+H7UyFeC3k6chYgAEsME5zX7fg6EsJgMPRpvlqUsNQoyk480XKlScE+W8dfdk7N9Xrq2/wAmx9eONx+OxFVJwxWMq4mNNPWHtK9ebTnzP2ivO17LS27dz0MJ756duwP17/45yCANHSqOEYqok1JOTSfvJNtq19L6a3dvO7ZkrK+l00klfazlrp3vt266iqu3POc7e3pu5698j8hya1UWpTlf4lBJf4XK7363/wCC7iSavd37aecvPzVvRbi9ifQf/F+/+yPzPNV/X5+fp97V9Lt9H36f+Tf/AGv4+Z+B/wDwWE+C/j/w/wCOvgL+2J8Jvh38QviTcaJZ658C/jf4X+GHhbWvF3iX/hXOuzXHjHwX4sk8MeGtPv8AXtSsNE8c6Bb+H9TvNNtby7tD4h0GeaGDQrXW71Py/wAT+E6/EmVUpZfalj8NVi4Yn2TqS9l7SEvZ8kZxl7yjNX5rJyV4tOXN95wPxHHKG8Djbyw08RDEa1ORQqO0MRvdP2sKUFprFqT15j+d7x14yvPhp+zBe+CvGHhLxx4GvPAv7YOheNPDmm+N/AXjrwRf6z4Jg+H/AI806C+0ez8W6Dol7q0Ol3Hwc8GadfTafbutjquv6Za3ZSe9t934AuCOIsLxBhJzyjHyo0MpxWMqVqOFrVY1quHxWGounONOnL2M6yqSqw9pJtRjL3ZWnb+hf9dslxkMZjY5lg08Xl9LL6lOvi6FKUYwp0qdGSdWonUjTp4eMbKNk5RXMrK/D/tQ+H9V/aL/AG5vgh8G/g/qVl4l1vxP4w0b4TzanbRavr3h3w7Bqn7RPxfh1vVvEVz4XstQltdA0bQPHaavezeWI/sMcssrpCskx9vw84Rx2axxeHzHC4/KaebY/F4/2tbLsTUWHU8JCnTptSjS9qpPCNzqLk9nGSvFJcx4WK4ywXDOUzqUMZgMwdWhKk6dDMcLSm03Vi1bnnd63Ud3JpK8m0/10+Jn/BG39tz4Z+PfiZ+1Rp/xa/Z7+Ij6b4b1jXfEHge2074reGvEOt+HtE+H2o2uqw+Gry00DxhHL4turjT7fVNKs5dPmtL+/kfSWktZGt9Qr9CxXg3ho4WSoZjKq4000vq8Y81VXbavVkuVpXUV7/Ny3lJN3/O5eKkMZgFlk8sqUv8AbcHiXW+uqcVHDSrx5PZ/V4yfO53572jfVNpN/Xn/AAb5/D3xjL8Ivj98fPGnhjXvC9x8SfE3wz+G/h218T6FregarfaN8Gfh5p+m+I9XOk+ILGy1UabqnxH8S+NrrRr2bzYLvTGgktJ3jQtX2vh3w/V4ayzMcHVhKLq5jGspSTjKUY4anSune6i+W1tdb2k1e/x3GWbUc4xuBxWGbhUo4BUW3Pnim8Viai0ShZ2e13uk1peX9CoQgg/LwBnCnORnpknAPp79cgNX3tlKNp62leL101b1Tet9O3Xfc+OUVrKSTqPlvPzTnzWTu1zX25tNNWk1KWgoKAGlQfTp79if9r3P59TS15rt+7a1tnzXet7PS1tLb3E72dmr9G07bvz7fjbfUQ8RtnB2jvxxlu+cA4A5PqB1yTPs6d5S95X3s7veWqVu9rrW+l20rtRVTlaXLKenKrWTfNPfV+T9HG97XcW45OMnGOCeQcuBnOc5PTgEZOc8EuK5FNylLlfwycl76baSSsnG+6/m01bQueE3VinByglyxUbNTvO+rdnZqPpezalq1UYDcAnOWIxjqwHHYYAyAc5wc92htKcrRslS5/aO7jpKScbJq7drp30tfd61G1r7QXZJ3fNLm1ttzcy8rp3SVmiueSASoGeGGCN3Hy8nLD3OPmyMncSDnOEKkeT3ppN8kk1Bqbbu5ar93HS13e6bsrzFRdSyk5RlB/ajyRnzOyslfma5mnfRJrVvVwkySByQcYGeCTxnscD6e/PFPmi4pxtOUoOcEtOblu923a+j3dtb3FTalzwjo4X5238L95XfXW3Tz03ZNVrVJtWdlp/4FdfLlX/gS7a6LTz9fn/n+XYKYCEcEevf8T/n8TzxyWWzV11XRq8vzv8Am92xrT71+Dk/1/q4AEDBOffBz1b39xx7DmpinFy1XK7WWujTd3877emrSsS4p7+X3Jvz8353e5EWwzgYJAA5I5+8enUdMnOc5OBwTWbUnU5JL917J1JS5dHJVJwUeur91v5aaNiWnu2inKSVPW7nH3+Z76KMlK/y1u1dVO7K9vU9cZc5xnJPQZHABPBG7N02nBPWnKVmopq7hBySa00Vmk1b7SV3ZtyrSdSErPk5Vbla3cr6tvsrrs1rvdxjHYkccdPfk5B9v14ppSu71JtX7taXei/4b8LJNQik0oQb6NxbV9enNe22l776jxwMZz05+m7nr3yPyHJqi1t92232vP0t6y1fUoAOxPoP/iv/AIn9fahf1f1a/S/o13Bf1f1a/S/o13IvM9VwOOdw9x+fA49T14JrJ1UqU6kotcjUXHrdy5d7ej66Pd2uy6V+dqNrct38a1V121Vuu61d7js8EgDOAfvAZwWA5PTjnP8AtFSSQSXKzjzJy+y48qd3dSvp8ldXtZ3u7iumpKPvNW93Vc13JaX6af8Aky1abZCo+Zg2NuG4JBJweCMDgfXOT3JqeSEpqTcpe607yXJDVXUoKN+b3d77Xum0TKcotcrgvcfPFQl7TmV7NS5rJKzvdNvS0tJXZ8wyVDYyeQRtxhzuxg8HnjtzznBrSKvGXsXRVkrxnTm3zNy05vabPlWv95Kza1znzRdJKpWq+1kk+SUYxgm5au8JLt56rVWbHoxGVxlcbs5GGO4g4wMjk5HJ+6wySDRCnCLlZpTlbmV1ZSd227PZ2vFX2vdtrXVzcqnLHWKhJylZ3bhKUGvV2T+9bp3kRuDx6A9c4UuMkZP149RknqblaN+aSUbe676Pdv02v1vrvZtxF2cuWPvSVJyV1opKTv1emqfq7bDlYt2xgLnkdWLDH4Bc/jjGRmpk7JOKcveS6p21Tlqr2Vl9++jZd7zlFaxio2qLaV3NNJdLcsXu/jW9m2+mUNwQSQepGc+g6f5/Wp5IttyXNfby/O9+34oEkr+duvbbv92nqxAmBjPB68cnBOPXHbv680OLaceeUVpy8rSas5X3i1Zpr59bImEVBN2Tk7atXWjl0vfVNddH1dg2D1z6cH1PXn0+mOOpzUezlzX9rUtba6311+Hz7/JttlJtqSkoa9l0u+7638/VXZCVIVjkBd2SwHOMydPm74555wvPJFSnTprENwa5FB803zKpKXM3dK21red1rdIi3NTkq0nF39107RaV5KPNKSl9mzvtdyVrauSIk7+Oy8kgknLZ6DgdD1/iwOSxGyUuSDTilZ3ioNddLXk2vNPVbWuKF7yjeVSMVBxqyad3L2iaskrcqjB9b826abcgBGeRjjAA9znv3/mSeOcz7OG9ter72bt0uvv7a6GnTz/Dft0083qLVgFAH8gX7Gn/ACukf8FdP+zAPhp/6gf/AASzoA/r8IGCD0xz9Pm/H19/fPNK2jXdW/8ASv8AP+rh0b7f/bef938VruRgIu4gknCg/MwJAL45B5Iz74GOQQMqLm+aKSaildvVPWWu70fVPry3bZN4Wd5WXdPrdq7tJd93fWyu7XInSMgu6I2RsJZFdgrO2VywJKk4ypO3AGF55UVJSlKT5ZW5ElGPvRTad3bms072vo7t3k7glGS5YpSp6zm3OWsoe0a0XNdK2muilJapso6ZpmmaVafYNJsLDTLGNnlFrp1la2NqskkkjyOsFrFFGrSu7NIwXe75LEszmkqE4O6qNU5OPNSVOmk4e82uZJSV77p3Stq7tkRnTn7NuC5fekmpSupUasoKy6pt8yXTzvc00RRuYBdxOdwGO7duOuTu7sCMnpVtyinGCurac3m5ee6tdb2TS0UpXr3Ltp2u11s3ZyWq7O7uttno3ckAxn369eevr07cc45Ge9KHNZ89r3drbWu7fgk/nvdMvfbX+mu/l379U21qgCgAoAQ/dP4evZvz/wAPepfPyv2dnK6sns1zTv0fS7+5WdpEvls+Z2Wmuu/vJa3TV7d/vaTcZVH3I3zKcZVxuVtrZAwxI69Rjn1PWi7cLShBv5b+8r/DZXXL0013ldijFxfNGpO1r6N6Wu7q+q2bvvvdv3nKgdJ0dr+PV30vT21OCBrO31M2NqdRhs3bdJaw3hi+0RW0jANJAsgidsFlZgTUKnGPNP2VPn+3NRipP3pq7lyJvRLV67rZSbqFSUedRqz5ajTceaSTs3brrqrpPZ2erd3e2hSzDkbi3fhtzEgcnG7H8xkKuafMuSVRXbUW19079eq5el2m9Lppyrx5lJrll18+ZuPpe3fR33aba5XptyBggEkjOfQnj2PWodaapKaj70ny2S03nfr/AFe2tmO1rtvTTTXS1131vbbze7k25F4Ud+Bzz/009ef8mt/6/Nd/L89bpttWavHby0W7Xfvf799bi0DCgCHONwyBk+nONzZ59OQTyTwB0rN8zklTveLV3pa11fTW9ui/xXd27pSpwcrve3Xzd3+Pur11uwPHCnA78nj5nOeh+9kfpz8ozS9o7rRbWmkpOUrtNWcdPdV+7d97NOXFOM5uckvd5bOVr80r9esejvZrulbNvtO0vU7Wez1TTrDULO4KfaLS+srW8tpnik8xWmguYpIpjHKqyIZFbbKFcEOoYipVXe9aTStKzp00mry5dLaX7rZcuruCrSjzOnN2pzhQptTkpQk51Iys7trVpvpfdNO5oJDDHCkaKkcUSJHFGqKkUcahlREiUBUVUG0KBtCYXG1TUw5Y3pU0ot3vyxUdW3d7KzbvdX66vW4PeVSq3Nxd223upSu731b7vXV66avjA+cqVySDxnqCwJYcHn3zyRnoCW+aPuRSbir2b85JO9+rjd/K13e4pQd5p/Fa7V9UnK2nld+dmve0DARSAVUnjIB65Y8D3yScDrjud1FJySk62tnpy7byXSz/AJd9b31tdjg6UW2+qtpfu9762/W2rVyUe/Pv+f8APj/JNWUFAB/n+fv/AJyeeuV0fpp/5N/mv6QEO1cEAkNgj5SwJwxJGRzxt45zjAyQDUtzjTailKSSST06u+t79m7aN67NpS03e8ml5X7y1eq7v/NNMa8YYAuFdhgqWXJQ5OSuQcHGCe/vklqzlUrqm2m6VSVqcfZwhJ+85N35tOX3U+V3TsuZNq7hQTdr86Wjc5zT6pWs3um73fVK+8ihZaVpenSXsun6fYWMt/Ot1qElnZW1tLfXPzItxeSQQxvdTgAAzTtJJsIUsRnMx5YypYaE+WrTjzNqnD3ot1E1ZK0HLkk242d2t3c1aU48k4pxg1p7SenLKUu+2iutnf3m73NJUBLE4J65y2Qc9ccYztyQOpxz0J6W3FNQXbR9rve99ul9Vfe7mRenJtp+j101a3v631vbdu11IoIB3HJz159/Xp+HHTvmop+0972lr+7y2ta2qeyV27ddUrXbvd0rdHf5379bv+rauwtWMKACgA46Z/z+f+fWj+v07/r+OoDH4jf5gvB+ZuFHJOWJzgDqScgAnPGSRWWsrtK17b2vJd/LXyv1Tbl8zjL2coqdvdbeifvWbt+Wu7Wu7/D/APYv/wCCyXw1/ar/AG3/ANr79mm+vvBvhvwL8Orq6vf2aPHDarHav8UPDPw5uoPBXxq1DUr281H7DcT23jaRNe8HDT47db3wHdJcSpNcadqF83yeU8T4TOc74nyWFGftOGfYTqTSqONaEvrLlUpttQqKMqDVoX5U7yuo8z+MyDjbK+IOI+KuGcFRqxxvDHs/rNbkm6eKU/rHNUoTsoVYxdJ83I21GTblLl5j1n/grn/wUgn/AOCcP7P/AIS8YeDtC0Lxp8ZPiX8QtD8M/DnwHr1xNFZ6l4e0GeLxN8WdZuktrqzuBHpXguwvtG0m6+0LBb+NPEPhJrxLiyS7tZNuKeJcNwpk880xtKdSjLFYPD04wpSlK2Iq04e8ou63bt30u07l8ZcX4TgfJJZvjqFXEUamYYHBUqVGlUqVL4upSpvSGujlKel1G0uZOLV/v/4H/HP4ZftEfCvwP8YPhR4s0fxF4S8feCvCvjrS7iz1CzuLnT9E8V6UNX01NZgguJTpt7FEs1rd290Fkt7201G3eMSW86j3sPVeJp4PF0lOOGrYWNSMJRcW41OWUJJNaqKurp2vJWbtd/TYecMVg/rOGaUMZSoYmg5XvFTgpe805crtJtw3hJqLbabPyp/YV/4LG/Df9r/9sL9r/wDZ7vr/AMG+F/B3w51eTWP2ZPGB1WO0b4p/DPwXf2PgL4n6zqt3f6kbWfUIfH0sWv8AhlLCC3W5+H+v6V5lvJfaTrF/J85kXFWX59nPEWSYOlKGJ4fr08NObhNU6rn7ZOdKc1yzjek+ZQu0mm22rHzGQcaZbxNn/FXD2X0qtPGcK4/DYbHylTmqeJ554hTnRqSXJUh+5knyXSvBOTaUn+4AI7nnA4PX+L/AfmOBzn6tf1179W/6vu7I+z/r8/P0+9q+l2tABQAUAUbm4t7RLm5u5oLW1toHubi6uJI4YLe2hR5Li4uJpXWOGGCNDJLLIyxpGGZ3ChjUzXu09bRvJy6aLnerv8N7c1/7qvvIzXM/aOVlKM4xovf3bc0m1fRXbd++l23Y/FL/AIJzf8FiPh5+3D+0L+1x8IdSuvCPhPSPAHjH+3/2Ztba/wD7Pm+KPwDh1XTfh/deI9UOoX7wSeIn8eLHq1tb2IgD+E/G3gmxFkdUsdWupfl+H+Ksv4jzHPcDg4TVTIcUsFOUoztWTlWUqtJtuM6d8Om3HSDkoNtpyfyXC/GeX8VZpxTlWCpVIV+Fswhl2Kc1L/aJylik69Byf76j/szbqQThGUlFybtJ/tyhyuef+BDDDr1GTzzz+HUivqtld7d+nVd/L89bpt/YXWya+/8A4P8AXdjqP6/Pzfb89XZ3YUANb/VvyAdpwScAf63kk8Acryff0JouopyeqjZv0TqX++2vklrZMzqJ+yq2aT5JWk2kk/fabbdlaybb0Wl38bMfUdU07SNN1DVtVv7PTdM0qzudU1TUr64itrHTtNsYJri/v724lkSK2trO2gkup5pnWKKCOSSV1QF6G6dJValXSmqftJSaahFQ55czb0SVm99FzatqTZOVKNSKrOypUHWbbaTS503/AHo3jdtXstXe6v8AjF/wTC/4LA+B/wBv34g/tR+BNc/4RbwRceAviMuufAJTf/2fdfET9m3xDq9r4Q8DeJNQg1G/nEvjKfxXbSjWrSxMMUdt4r8D2Menx3zzNL8nwvxbguJamfLC0qsY5NiXQadKpzThHnTqxuveipR5Xa/K5QhJuWp8Xwdxzl3GVfiPD4CjVpVMhxk8LUdWlVpKcIzlGNdSqJRcG7JSV480opKUnJm5/wAFZP8Agqvpn/BN0/s16ZpWh6N4y8U/E/4j2uu/ELw5ezyG+0H9mbwbe2kfxa8X6TDb3kE0XiiZtT0zSvAZukm0+81camJrWdLO6jquJOK8DwzhMuxWIp1J08zx2FwqlGM7QlWlNrnb0jJptRU+vO7txky+L+Ncu4Iw2T1sxp1K086zTBZZB0ozlCE8VOSc/aRtFKKtKMZOzlKTs1GV/wBVdC+Kvw28TeA5viXoHjrwzqvgKHw/F4ruvF9hrFhdaDZeHJfDdr4sTVtQv4p3hsbb/hHL2z1xmuZE2aXcQXrgW8iMfqITVWFKtS+GtGE4ycXBSg1Nxlqlp/i63vKyd/tKajaHJCSVWMJ03K6Tcuezi5aW62vZJq70cn+Sv/BLX/grx4N/4KD+JP2mPCfiFPCvgLV/AHxLj1j4J2BvxZ3fj39mzxpqzaD8LPEd3Df6hN9p8aS6zZT2Piaz05lhiuNc8J21vYxz3gEnzHDHFOC4oWaxw1Kqp5fjcVhJuVOooy+rYuth3UjOUUnG9NJyvZ3Th7t2/i+DuNMDxss8hlVKrRqZLmmKyyvGpTqR9o8LXrUatWPNH3oe0hK9SLULuGl7s0/+CrX/AAVe0X/gnH4g/Zf8M2Ok6N4t1v4meP4fEvxY0W8eZ9S8Lfsu+F72LTPiP4z0i3tru1dfFEuparpkHg1boTWN+2m+JoDa3E1sCvPxZxXhOF6WURxkJTeZ5phsFGUIOUIqr7T4qiTjTctPZuW/vyT/AHcrvi/jXA8GUsjeMpVJ/wBr5/g8l9pClUl7P27xUfaylFqMI3w6s5txafNdwjc/XDwj4x8JeO9GsvEngjxPoninQL63sLm01fQdSs9T0+e31DTrPV7B1ubSWWPdd6bqOn6hEjESGzvLO4A8uWN2+x97nrRtrFUb6fC+as5rR3V1yvzTTu73PsHTlSlCkk4ezlNSjO6lLRNfFrK3No1orvayZ1tBoFABQAUAfip/wU+/4K3+GP8Agnh8ZP2UPhe+naL4gHxH8Zr4s/aDkvpJmvfh1+zLbXsvhPUPGWkwQXlqF8QTeJ9UtdZ0wXi3FtdeG/CHja1W0+23OmXafJ8R8VYPhqpkuHx9KpVeb5h9TpunRlKMb+2lGUpJcqaUI2Tfe7TbZ8RxTxtgeEcTw5gcwoVq0uIcyngKM6VCpKNNJYiaqTnF2UYxp+9KXu62k1Jcz/Yrw14h8PeKNOOr+Gdf0fxHpcjRrHqeh6laalYOxhW5CrdWc88BYwXEEwUSFjBNBISVkjJ+pSm6tSpzP2dSnRdOFndW9rzSu0naSnBrurPQ+1pxUIcqs4uU5wad7wlJ2tK7UkraSWjv6N9D/n+fufT+fJwc2UFABQB/IF+xp/yukf8ABXT/ALMA+Gn/AKgf/BLOgD+v3/P8/f2/nzwcptJNvZK/3c3n/dX/AIEt7an9fn5/1d673ptgDnsST7ZcjkY6YBJ57AHOSpbnGU1T0aqLmTaunbmsravVp/O172BL99PqqlPl66tNOy1er5dHra8tb3Z85fCj9q34EfGn4y/tFfAP4ceMode+JH7L+u+EvDnxf0RLeWKPR9T8X6CmvaSNLvZHeLWoLRDcaNrl3ZBotI8Uafqnh698vUrS5iXmo4vCYvEYjDUasZ1cHy+2p3Xuyftr3s97xd01o7Xd2kcODx2BxlbFZfh60J18vcYV43i5QklVu203Z3p2akt2k25aPof2lP2i/hL+yX8CfiN+0N8cNdm8O/DT4aaPFq/ibUbKwn1LVHjuNQtdNstP0TSLZhd6xrGqahd21jpelWQe9u7uaCC3jeU4KxWKw+CwtTHYipGnSpRUpyk0klzuKvKTsk293ZJO7dkzXF4zDZbg6mOxVeFChRipzqzajGMeeUU23JJXb2bW63Vz1Twz4k0Dxh4b0Dxd4W1W01vw34p0TSfEfhzW9NuEutN1jQda06DU9J1bT7mMtHc2Oo2FzBd2s8bFHglR1LK26ulSpyjTUOVxrRU01fWPvSjZq7u1DzT93S6TNITSUakJ+3hiIwlFxs01JytyNO0lJK8XfZJ90+ghIKNj+8QfruIz1PXaTz+o5L0V0tlZddGrrX73v36PUuDTUrQcPekuV7u0pK/ztfro46uxJQUFABQBHIQqMSCRkAgHB+8en5fjyM5GSJJp3skk5Xf93na6/wB3T/E10bYtm07WTd9tIqTtv1s/v3d2fNvxa/au+A/wQ+Lv7OvwN+JPjSDQviJ+1B4m8T+E/g5o0kMksOta14W8Pza/qMWqXcT+Vo1vdqtroui3l8Fg1TxXqGj+HLNpNUvoIjz1sVhKdehQrVIRq4pP2MG1zzlFx+GN76uS1XmrtqV+OpjsLRr0MNXrQwtfGOSoUZySq13Bpy5IOSbv7T3d17zd2k2fRYCOFHOc8ZP8REgOQGIySGxg4yBySpatYzjSmrJ/7VNqTu7XjCo273b1VNJq99Fdvd9V3OM4W5YSVO/oqkppddWoxldbprV7nzr+zV+1h8CP2s9G+Jev/Arxrb+MNN+FPxZ8c/BTxtcxRSW62PjrwLqC2Wri0WSRjfaDqKvb6j4a1+Hdp2v6Pc22paZLJbMHbLDYvC4xV5YWrGoqFeph58ri7TpTnCUXaTtZrfdvmV202cuDx+DxyxX1OrGrHDY3FYOrZxfLWw9adOrFuM5K/MuttE9XJNH0mrBwSO2M5yDznH5gA/RlPeug7B1ABQAUAcP4/wDHnhL4X+BPG3xJ8davBoHg/wAA+GPEHjLxZrN5IqQaZ4d8OaZe6tq+oOXdPltrK0mkVAwaRykSEystRUqUcPQrzqyjGlRp+1nNuyjFxnKTbvskr76tSV20ZVq9PDUq1Ws1GlQputUrzdqdGCjKbcm3b3YxulfVrW7ir8f+z98dPhp+0z8Ffhp8fvg9rcniH4b/ABX8J6Z4x8H6rPaz2F9Jpeoo3m2Wr6Xdf6Xo+vaTdx3Gka/o14q3uk63aX+l3kaXtvNGMqNShiaVOvQkqlJpV6c4tcrfvxutXdXTu1tpunJucPiaOJoxr4aqsRTrRjOFeDTjOPPOMVGSbv8ADL3u6lurs47x/wDtWfAf4VftCfAf9l7xp40t9J+Lv7RWm+PNT+FXhponkXVbb4f6db6hrY1K8WUQ6RLqEE8sXhiG8Cv4ivdN1uw0sy3On3gWXj8I6uFo1KihiMdCVSlTclzSVO0pO3Nf3VK+mjckr8ys8auOwmGxmFwdWrGOLzCWNqUINxXOqKpyqWi5KSa9rHVJp3kruV0fRnmKUkZmCqisXeQhUVVDFi7k4UKoyS2MKsm7O012LltzXVuV6qyslKSu/ee7i21ddd7a9UXF0/aVLckm7U39hqco87u/di+STbevvO97M+d/2YP2qfgZ+2H8N9U+LP7P/i5PF/g3SfH/AI7+Gd/qItJ7OeHxZ8P/ABDd6Drlv9mnZpGsrzy7XXPD2ogtba54V1PQvEWnSSadqVrO/HgsZg8fGpi8NUjVjCf1fnUouMpQd2m0n7ydXZu6uo2TTRy4LMMHj6LxWGqRxijXeHlWpNSipxcW4Npu7i5rRO6TSd3zpx/tEftZfAb9lZfg/wD8Lw8bW/hNfjj8XfCvwT+HZliacah478VrenTm1ArIh0nw7aG0xrniO5A0zR2u9PS/mRry2DGJxuFwvsFiJxh9cxVPBUldLmqTdW0VeUUuZQm3u27K1nzN4nHYXBzwzxGIhh/rmKhg6MXOMXUrTlUUYxU5RV2qfnbS6StJ/S6sp4B5HGOeq7gefb19WxkleerRaJ6LRednLz7a9/etq469nfX599Za7/P/ALeavdNt1ABQAUAFABR/X9a/r876gFABQAUAFABQAmBnPfp/nn/69Ta7307ff13+Xpu1clyadkr7dd9ZLt03v/eeujv4z+0L40+I3w9+BfxY8a/CD4dwfFT4meGvBXiDVPAnw9v/ABHoHhLS/E/ie3sZhpdlrHifxPqekaLoehxXDJe65qF/qFukOkW96IJGuzEhVT2nsqnslCVVQfs41JShTlO1RRVSUYzlGDaXM1GTSctG3czm5wo1PYqE6yg3CM5OEHP3+X2koxnKML2vKzaSel0f5jHwl8d/ETwp+0C+q+HfCWgap4t8ea74y0P4hJ4ag+GOiaLqWka141j1jxtJ8NdX0u9tdH0O3tNUhTXvDdr8PriLT9X8I2l3oSLd6FPOr/zb4b5hxBLxJ4so47PeH8XCrV5M0weDxmKi3GLrxowynlwFKCpRhzQxEYumkrLkdkz+RvCPM+Jqvi9xth8w4j4bxlOdVQzfA5djMVCSglWjQhw5yZdQhCFOHNSxMYOglouWaSkfrv8A8Frvjl8YfjV8Ov2ENK+IPg7wN4j+GGi/DXVNU0L4o6RrngDVvHHxN+Kl3o93ofjmKLw5c6mnxK8HeG/Amj6bp/hzxZ9q0vTvD3iL4n6wbiOe+t9L8LXK+545VszpcP4SlgcfgMBl/wDaGHr1njcZXWPr1qNS9OGEj7CV8LhIxjjMTN1IupClUpThJXb+n+knic9p8NZdh8rzjJ8ny6nmWFliq+OxeIjmVbE08RGdClguTB1ZOGFiqeMxs3VhKpQp1aM1USXN6x/wRt/al/aU8HfD/wCLTeBvAPhTxZ4pj+A/iHQPhH8LNe8U/DvwL4Z+K0/w/wBEgX4eiG7h1ew8EeC7r4eWr6tF8RrXxBf6LPq3hvS/FmrKlx4o1BBJ+q8K1M0xPCeW43G4zKcbipZfRp4WvhMZX+pqEKUvZTkpYWCgsdGMMVNKD9lacFKa1P2jgyvnOI4GyvF5riuHqua0cowrhVyvF1o4DHUfq7lhcxv9SpWji4eyxGJlKDqwq1JxlKd3J/hf8DfHXxA8I/HdLvwr4U0bUfEHjq/8S6R8QD4ftPhnoljfaHe+NRr3ijUPh3qmnXtrYaPDpmt20XirRNK8Azx6ZrfhKF9GjgudLeHb+I+F+YZ5X4+4qjis6yPHwxU51s3wtHF4iE8JVouuqH9lcuBhGNOylGsoeyi1GmlGUlp/OPgznPEuK8T+MqOK4hyDHxzec6uc4PD43Exngq9NVY4ZZPbAQSpcs5wrRhKinGNK0JOMnH/TA/ZF8faj8UP2afgx431vxDofirXNW8E6Umt6/wCH5buSwvdX09ZdNvWmW8gt7m31hXtCniC2lhRbfWReQ2xktBDIf6SXr26t3+Lq9dlfXWz7xP6+SsrXvayvdu9nJXu9Xsnd6tNed/o+gAoAKAPl/wDbJ8b/ABU+HH7L/wAdPGfwT+G+h/FP4m6N4A1tvCHg3xR4i8I+F/CNzfXMD2dxrnjXW/G2qaT4ctfBnhGxnuvFHimDUr+FdS0PTNR0iF/Pu43rhxU6tChjKlGVF4j2NR0Y4itOGHSjCblKs1CpywTg5NcstLpNSak+PHSrQweKng/ZPGqhUWHeIbhhoStLlqVpxjOUacXHmnJwkrJq2jv/AJq37MXjnxv4H+Mmmx+A/DdrPe+NFbTvHd3pNj8PNFnOg2Xi2bX5/EPgfUrS6svsceg+JobTxefD3gZo9L17w29rGbOS0s9H+z/z94QY/N/9bOLMPXzfJcbhq+IrVMZUwuIrzq4XMVVnGjh8tVTC0lDAzh7SGIhTcI3pYZujdKR/LHgdjuJH4geIWCxfEPD2YUq+PxFbMauBx2Mq1sLj6datSp4bKIVsvw9OOU1IqpCryTpKKoYaKw0lzNf6an7Nfj29+JnwA+EnjzVvEGh+J9X8R+BtBvtZ13ww91Lo2o6sLNbfUp4lvIbW6t7oXUEo1SxuII5bHU/tdnsCQqT/AEa1OE/ZVUpXtHyeskl7zaae+9/e293X+sXFXdJWU39vo9Xre+7tpre17rRyfug6D6Dr1/j9z6c/8B5ODmrW0XTTa2zklp02enm92pFJW0ve1lfXo5q/Xfz123adloAawBjdSAwKkEEHBH7wYI5yD3HPHqOaT5uVqKi5W91Suot3nZS0k7N3T0fXRqwmouMlJKUWrSi4qSkvfunGWjTSd07p3s9EfGP7e3jn4t/DL9jv9oDxZ8Dfhz4a+JnxFt/AmsWOi6D4013wN4e8BabZataz6Z4g8aePNQ8fappnhi68I+BdDmv/ABPruianctFr9pp7aB5LpeyMPOzCvWo5bmVfDzpVpxoTcaWKk3hKdbkml7VzjNfVkuV1IezceX214Nyd+LHPF08vx9WhPCvFRwlb6tXx6jSw1GcaVWdP20oQrqOEg4qdRKlPT2kZUnZN/wCct+yD488b/Dz4vaJZfDfw60UHiiz0STxhqcEHgfStZsNO8N+IL7WtF8X+G75Ly11JovDXiXyta1Twr4VxpGqaZeaTfHTjc6NodxB+C+DeNz+XEnFWFxucZHjqGLx0quNhgMXiqdfB4idR1IxwkYYKjGOV1INe1jGai6iw8nQbTP5c+j5juLcRxXxpTxXEfCucYGebV55w8Ni8RXrYSu681GGX4WvllGnVyydowlHnglOGHboJxUj9Jf8AgvF8Y/ib8cvjb8Bbv4ofD3wM/gbQ/wBnexPwu8W+C9X+HPiHxL8V18SaVp2q/EXx/eQWt+fG/hPwbqPiVn8J+APCfjay020h1PRvF2q/2cNQv9Rmj28b8XnVPFZNSwWY5LhMHh8xw8lQrYmtUrTxbqyjSx7prCypSwWDcZNzn+8UZxcacnKZp9JHHZ/hcRkEcDnHDuWZdh81wdbD4fHYqusfiMZSrVHQzOGGp4GrSjlmC1eIj7VOVOrhY+yqOMkvrL/gnx+1n+1TpX7En7Xw8MeDPhz4u+Inif4LTz6J4F8aeKfhR4Z8AXenWyReCr/47R2usapa/DSLwF4R+HN3JqXjP4Yy3Vt9qk0vRPDOn6HJon2uGP8AZ6VfMI8MTx1TF4SpmkMqjKinZ5feEKzji5/u5RjhYybc4yoyUoQmpQk3d/0Nh8bmX+qEcylmGWVMyoZD7Sk5YutPAQxVOnip+2qOWGcfY0lGFapVVJyqUeWlNNQifhn+xp8QfHXw4+L+iWHw20CSxtfEFn4bv/GGqxw+DdJ17R4PCOq32teFvGOjagl3b6td2fhrXSNQ1/wt4fEuj3tvfaLqL6eLnSNFkX8Q8FMdnlfM+KqOJ4gyTG4StmNSpiaFPG4pYiWJnXbnHBQ+pRSwMpRjKSjOEXJQfsnK8n/OP0f8dxPi8541+scScP4/L8TmVavXxmHx2K+tUsbVxdGriYYGgsBTUsA5e0UrThFuKl7NyXM/0U/4LxfF74ofG/8AaL+FOo/FL4beB4/B2hfs9aRH8I/EXgrVfhr4r1/4oaR4gtdP1zxv8SNThtdSl8Y+GfCmu+LLi70X4a+D/HVpp0cEWheJdTXSBqWqa8Rt43YnPMPmXDdOjmXD+DwUczw1SlRrYzE+3+vQlVjQx+KUcFJSy3B3qQcKk5KUa1OXsXzSka/SQx2fUs34Ow2Bz/h/AZZSzbBSwssfjsXSq43MVKso5hVw9LCYimsrytudKvKb1eJw8vYtOVv2i/4N7Pjr8TvHll8QPDPxNv8Aw/pN14k8N6T4xt/DUV7o6N4h1DRbu28P2njvwHYeF5Lnw3pnh/VfDS2UWteGLCa0Ohm30O107S49Kt5PK/dsDUxWMy+nWxywlHGc2GjjFgsXXqx9pStOLgnRpRnQrfD7TR1IuUKkOWCb/p/Ka2bV8qwFbOo4Srj5U+TE18HXnXpe0hTjb2dSdKlz0p8zcKrUZTXPTkrRV/6eK9I9EKACgBpYA4Oe3ODjqQSTnAAxlvQEeuaP6/NLr5fnq2m2H+fl/wAHCnjb4oeNf+CgGvW/xS+EHh3wv4e+Hvw9tfDHwaSw1D4UeLvGfizwFba+mr3XxE8f2+m6nqGraPa+LvEv2i48C+CPiBHbw2nhHRb65TSkbVtfW5/m/wAZMVm9LPOFZwzrKMuwuGxyqYPB4rFV/rVSq3Xpzx2PpfVp044JSm8LTjzVFz4ilU5VLmP5G+kBj8/w3GPA+Ejn+S5Tl0cbRq5W8Vi66xDxk1WVTFY+nDCytlylOrgJ0nUnTdSvRqxpqcOdfuV/wb8/HT4m/EHwd8TPDfxO1Dw/pWq61p+keP18IpqOmzX99rUl2dG1Dxv4Oh8OTXfhu28H+JtMi0q/vdGsLxX8P3L6Rp9jp0Wl75K/onCSrVcHhq+MWFWNrUKc8VTwdepWw1FuLcMNTc6VJctF88FJQTnFrmV42P6vwNXEVMJh446OEp5hToUljqGBrVK2DoYlqSqU8K5UaMVhlKD9g4U4c8PelBNNH9IcZDICDkY4PqMyYP4jnjj0wK3/AK/Pzfl+J1DqACgD+QL9jT/ldI/4K6f9mAfDT/1A/wDglnQB/X2w+Rxn+EjP/f3n+X+SaicHOnOCdnOMop9m+dJ/ek/l1u7zJ2hJ3StFu72VufXf0v8AI8z+KvxG8JfCL4aeP/il8QfE+n+C/BXgLwrr3izxN4v1VoRp/h7RtG0u8vLvVJo55I47uSDyM2thuMl/dm3sIFa4njU5V6lPCwniKs4UqGGotV61afJGMUpycovWMkrpSV07t6tx97DFYqjhaUq1arGjRwlCVfEV6slCCp2qaqXMlK11dSkk1J7tNP8Azkv2E/2u/iJ+zD+1741+POkfFjxZFrfxm0b4teFrfxF4n8NaGsnxE8QfE/4hx+K/Cmq/GSCbWr+z0DVFkifX9H/scapBpvjZ7bwo1ymh6lqF2f558L+NskzLxF4tw7zOu6OOlUeXPEunGlXdD61KvJxjVl7ONGTjWupTiqb9m4txVSX8qeD/AIhZBnni1xngqOa4mSzWvVnk6xjpQw+K9i8XPE86hVqKhCk+TERlF1F7OUoSTcOd/t1/wX3/AGufBfx7/Y2/Yl8J+EfiJfaR4v8Aid44g+M3i34M2Wk2N9Z3ugeCNM1rwzqt948vpdVh1TQ7Pwv47vLm18D2kVreweJvEkP9tSKIPDX2mvqvGnPcFlXA+MwssVKGJzJSo4NYaonKbvWbxLlo4Yam43nUs1Zxj8Urn3X0iuIMtyPw9zHAY3H1MPiM2hUwmEjgpKdWpVvVviNZQksHSlTftMRsm6UeVSlc7X/ggx/wUC1h/C/wM/Y58b+NtR8TeH/CPhHUfhfbPrmjafp2q+FfiFL4h1nxT4U0WzlsrzUrvUPAMnhy8tvBvgLVtTuBdXOn2WmJqNra3kV8ifZ8C8QZVnvCuVZphMVOXsqFOlWp4qEYVY1PeTnNKrK1lOMefZvmSSXvH3vhhxFl3E3A3D+b5TiaNaEaSwtXDVMRz5lGpST5vbUE2oVafPF1Fze7Ti6ibaXN/WNbZ8r252ggjC7mwuCT0AA+oPBJJr6yi4yhOUantVOc5Oe6lKU5vR3el7pPqlF2WlvvbSTmpT53zyfNZK6c6vLtdPTr15k76k1agFABQBDMQsTZxglFGSBks7IoGT1ZioHcknHJOU1JxcY2u/du3Zcrc1J63u1F6LS7snJXuRKVKMG6s1CDcYX11lKcowikndynJqMY7yk0vtOR/n7f8F2fjbZfEX/gqFqWvfDD4zeKNWtP2fPD3wk8Ef2j4c0XR7lvhH8RPBfjObxx4z074TXY163t/FPijSr6aHVdcuNaOlwP46XTfBNxNLpWhTzH+cPEzjTK8s4+4UpRx9dvJpt5n7GrSWHpYerOmoPENSlJVITpczT15YVacnzKMj+TvGPxAyHLPFDgajVzLGKhw/XnUz6thZUPYYLDV6lP2fPGNX9/ik6cpTpVZ0rQhWoqSnFTX72eBv8Agqv4Y+K//BOn9sv4p/Eb4vy+Bdb8OfD/AMT3Pw5+I3hrQdKufEd3pnxR0/UPDHwwg8IeGpbvTtO1D4gaf4tuoPDsWhTXsDQay9pPf3aQW2p3kX71mGY5fgstrZpXxcfq9DCVMbUk2oyownh6sIexSd68Zy5PZycoOVSU6dk4Jy/pzMc0wWCyLH5zXx2Hp5asuq46nmPtIqhGmsNUVOMnpGNeclzQpKb5p1ILmTlJr+bX/gkP+2X4+/Ye+IfjXQdL8W3scnxZ0z4PQ3PgR9J0+fwp4rk+GOq3mpeNL241u81Ge/tPiLqvh+8u9C0iKzszb6x4cvdbvZ9UOqaJo4P4j4I8W5bm0+KcvpY3G1sRUzfE5lhKeLpRiqmBxeLxdWNSM1Vk4ypU4wVWioy5JStflfM/53+jjxnl3EFXjXLcNj62IqyzzMM8w8MfKNPFV8DmOLxlfDvC0lKp7SVGnGKx9NSSwkpUk5VE+Zf6Ingjxbofj7wh4b8c+Gbn7ZoPi3Q9J8RaPcsrRPLpuq2cV5aGSIgtFII5VWWNvmWUPGSSpNf0FJuMlF+l/vtu9tL+jXc/p+N3e6t23137pW28+mtnzPqRyPTp/wCzf/Ej/voenNDCgAoA/Az/AIOKfi74c8F/8E7/ABJ8K2+JV94P8c/HTxz4L8KeEfC2i6fp+qX/AMRNF8OeJbTxR460LWo7jUbC40XwHa6XpsFz4z8QWAubsxDT/CiWkx8QOp+A8Ss6wOR8GZ7VzDFyovHYWeEw9OhOCxFSrOFSlR9gpyi/aXcFOyfLKVODclLml+X+LfEmU8P+HvEtXFY2rTlmGExOXYWnhnS+tYjHVqdahCjhfazUlNVbU5zhGXs5VIQcZNXf49f8EMv+CgWsfAs+Ff2YPEnjXUtT8D3vxh8Y+IfE3hbVNF0+G28HaB8UZtH0zwrqPgXULe7vtT1Xw5Y+KbO+1vxfFNHZnTfEuua5BBYyWUumyzeP4O59g864Kop4yTxGVTeExcasoyk68+apavNt+xjKFWNWm0p2bhR1a9qeH4A8RYHiDw+wNHBYyeKzDJKs8NnODryi8TSxDdWajh5qU5V6c6dalXSmqbhFOEm5Q9rP5E/4K5/tDWvir/grz4z+Nnww+NvivWdA+APi74F+H9M8W+F/Duj3+ofDbXfgnrU+s/ETw38HYZdfh07xg2m65PqbX13rUmnW2veLrnxJ4YmjutDsrW7m+F4341ybK/FDg/CTx+MpxyuDwmZQw8I1cNSeOnQoUpSbqx9o4To1frKtH2MfZt3cpSf5z4leIGSZV428E4N5vUvlftMLmNKlOP8AZ+FnnMsNhqDxdZztTVCrRqyzGUot4Kg6dW05Ssv3u8X/APBT3QPi3/wSU/bM+IHjr4uy/D7x9P4V8TeCvAXi3wPpekahr/iP/hd8Or2fwk074eaVf6hpVrfa7cxXt34Wmu0uo7vwzY6dP4tvphe6dcyH9yznPsny3KcfjpY2bw2Ewqq1MQoQjVkq3NUg4QVVwvGFWMdJ2V205OyP6S4lzXDZBwvjc9zDG08Pg6OAniJ46i41I+xlUk1NRk6dJJqUI0Z87U6Lp4i/PJ0z8DP+CN/7bvjD9inxh4y8BxeKb1tJ+JniT4T+JdU+HaaFpieE9W8NfDzSL/SfiHfeGtTmvpr+2+IF/p99ZR3Gk29pbWVx4X0fRr1L+a9sLyBPyLwR4my3NMpzvLo5j/t9PMJ5nCjjayipYStVhKPsppO8oU8PKnVg1fntU5kqkYr8F+jrxnlmc5VxDlGHzSlHMMNm7x8sJjq8Kkng8VWowVfDVb804ypUHCTcI81WM5pqE0j6E/4OSPjT4W+OX7Ufwb8F/Cz4t3PimH4WfATULnXvCMGmW3/CM+BPGXxVvtM8T+GtcsNbg1SHUZfiDrvhSy0e71awurS2i8I6DB4amgv1v9f1OCHDxo4ryrLK/CmAWOrRxVDOMPnNeOElFung6Mpt+097WrWjXjPC4dpKtBynzqMdeD6RPGWUZRjeD8teMxTx2CzzB5vi/qM0qdLBUZVXNVp8+lbExqU54TDyjetCMpc6jFyf73/8Ehf+Cil3+1pouo+BfF/izUfGGp6X4R8Lah4D8S63o2maL4r1nT/CugaF4P8AHdn420vRrm60/TfGa+ILM+KNb0+O6uI4LvWtUgsb240mDSnP7vluMw+aZThs0y/E0K2HrRpp89RRqQXs5SlKUI8+jV2rN2ckpWSu/wCmssx2GzDJMDnOFr08RhcXTpKgqM1OtVfs+aU4wUrSgk5OUlJuLTi02mfuGjbgeCMHHP1ccf8AfIP0ZeT1PbbRNNNNJqz6NP8ARa+q1bTO5O91dOyT0872T7SVrSV3Z7t3V3UhhQAUAFABQAUAFABQAUAJj3P5+5/z34x70AfFn7dH7JOq/tufA7UfgIv7QfxO+AfhPxHqcLeP9Q+FNl4Um1zx94TihvI5/h/rN/4l0jVjZeFNWnnjm8QWmlLa3es2sKaJfXj6Lcalp83JjsDTzLA4vL6tbE0KeMoyoTr4Ou8Pi6UZOd54evyVHSqaWU1FtJtW1aPPzPLKWcZfjMsrYnG4WnjaMsPPE5fiXhMbRjJv38NiVCo6NROPuzUW9WrN7fwo/HT/AIJffFT4O/tCfHvwDceNfiFD8Dvhr4m0ix+D3xs07wpokmq+J5Yyk1xe+IZT4Y0vRPDWr+GdUKabpd3pQSzvbuAS2bTCVmb8s4f8FuHMqzqjmeCeY4SrllaVXB4qjmEqWKknKXNDFVVQviKdTkTqU7KLUpxk23OR+J8L/R64PyDiKnnuVzzzBYnK60q2BxdHN5068Xzy5o1ZvDfvYVlCDqwTSlzON03deufGP/gn58QfiD+zTq/xO8FeLvjv4o/as8Gar4Z0TRfhn8Q/hdoXhz4c+OvhxrOoXDatrHhPxHofw+i1BNV0OW5bxFd6NqGoxWouDNNbXF2t+pX2eNfDPJ+OJ0cbm2LzbGYmhTjQoKWYv2FGlGtXnKFKl7CfJ7R35ve97nk3F3ue54j+EeQeIby/GZ1iM3xWKwzoYWi3jpPDUsPPG1HiJqisPKUcRVpzlD23NpGScouMGec/Cj9gLVZvE994A8b/ABU/altPAGs6loUvxj8L/DD4Z+F5PFWlRy272/2+TTZvDNzNDBMr7tY025js4vFukW0NhfPPHGEk78l8P8BlfDdbh2hmWc4bA1Kc6aoUM0dN041Kk51PYSVFqnJuTs0mlGUop6yt9DlXhfkuQcM4zhDL8wz3DZTUpYjDUPZ5tL65QwlfEOrVpYXFewTpqrKMZStFqTUna9zj/if/AME2viT4B+Mnxk0WPxx8RrX4F+CvE+i/8KF+N2n+DLCHXfFumzb7611vxHHqHhLRrTwd4k0Keaz0y2trW0tYp9Qju2SCaAO5+UyHwV4ayPOf7UwNbNsJWhXjUp16OY+zqOKqNunUaw65qVXli6sF7rjLldktPguGfo98H8M8RU88yqtnuDxGHxEK1HEUc2lTnaFRv2Va2Gj7SnX5YSrU72kko80UpN/2Q/8ABInxj4esPgsfg7e+AfHvgP4j+Hrex1rxXdeJ9J8XWfhv4kzrYWGk3fxH8NLq0I0TQNT16aGK48UeF9EeG0i1FzqWnwy6bcRmL9gS5Vy3cre6pPd2bSbbd22km36u7cj98SsrXvayu9W7Nq7fVu1293dN3bP17pgFABQB8F/8FAf2J7z9vn4RWXwKv/2ivir8CfAV1rI1P4gad8K9P8HTTfFHTYIlOl+FfGF54n0LV5h4WsdQQard6LprWttrV5FYxa213Y2v2F/MzfKKWd5bissr4nF4ehioqFaeCr/V8Q6fNLmpxq8kuWFRJ86s5NX1V9fGzvI6HEWV43KsXisdhMPiIqE62WYqWDxnLyzjOMa6p1PdqRcoTjy6wvqmnN/wtfEr/gmt8Xvhl8Z/jb4d1bxr8Q9C+G3w1+KMmifAX4yaJ4Q0l9R8a6LZalrB0fxTrlxf+G7LTdA8Sr/xLbFNP09E02+nXU44bebS5WMn5rkPg5wtw9mix+Anm1KUIVVC2Yu3vVIvllFYdKSkqcHO7u7q8m0fkHCPgFwhwvmdfNsBXz6lP2s+TlzecKbj7V+zpyorCpSp2g5O0nbnUXUbUZP+0D/glR428NN8Ch8KE+HXjf4a+O/CKwal4t07xRpvjG28PeL7u5t7OxvfH3hBtfi/s7Rl8RXVvFfeIPCOlzRW+kavcTTWltJYzLLX65FWjBXc+SKjGUm5Scbtq7v5b+vVNv8Aef8Al3Sp2SVKChGSSU5JO95y3k+l+3S+p+rI9+ff8/58f5Jp/wBfn/X3dbiWnn6/P/P8uwUANYAo6k8FSCfQESAnkH19/cEAUJuOq3Vmu106jV9f611umxNRaakoyi1aUZK8ZR1TUlfVNXuu19b3Z+ef/BQf9hCf/goL8MNA+Der/tH/ABZ+Bvw6tdYl1rxr4c+F+n+Cp7f4otbNayeH9L8b3PijQ9XnuNA8PXkUmr2/h+yaDTNR1Q217rUN8thp0S+RnGTYfPcsxOWYqti6GGxdo4h4GuqFWdPnblR5+Sf7qor88LO65lds8LiLh3B8S5RiMnxmKzLB4TExdKu8rxjwdWrQk5KeHnKMJqVCpCUoTpyTXLJ295tn8M/iP/gnX8a/h78VfipZ+KPGPxD8M+GPAHxj1DQPgP8AE3QPB+mXE3j7wzpmq6vbeHvFepXOoeGrK20jxLrlotpa3OgWUaWlyjatFFbSWMxlk/OeGvCPhzhjNlmmTTzbBYiKceejmMqcJ0pTTlh6sIYaKq0JunCpKnezl7OzvB3/ACfhHwJ4L4Oz2nnmUQznDVqLkqbWZNUpU5SanQqU1hYqpRk4QqygpWdRxvK8D3f9ob/gnd8QPFnwc8GfFv4T+Jfjv4r/AGh5viBoPgb4sfDT4mfC/RfD2lWPwxay8QTj4h/DXUNB+HtrJrkfhy6+yW1voWtXnnwfbrq0ls3VbK5l24z8LMi4vxlLH4yeY1MdGrThb65L6rHBXl7bD06CoS9nCfuR96bhGKWr5Tr8QfBPhjj3HQzfFzzWePWIoxalj39UhgU6rrYOjR+rSdGjU91Jc/LGKabumyT9nX9hOG91zXfhL8Qviz+03bfB7xDrk+leOpvAfwi8GazqPgbUr4So8mraRe+DNXNlp9zcpBqHiPTDBBfRm3m1iysp76OaGX67DcE5dgsnnw1SxeZ1MDi8L9UxCrY/nrxw01OEsLSrulH2WHl7/uOElac7aO59nhfD/Kcp4YnwVHG53WyrGYaOFxSqZo6uKWElKo1gKOJ9h+6wSvNxo8kuV1Klm+Zs+ebv/gnr8cPA3xD8et4o8Y/EDwfongz4uaho/wAB/iR4a8GabcL8QfCtlfahD4X8YXcus+GbFLHxB4msUi+1eFreEW93BJqNiLCSzYBvjuFfBzIOGc1q5nl08woVk5wpv68+VUPaS5aXLGjF8iUIttOzbTTbuj4bgPwJ4U4Gz/8At7K55vhsbQnXWGn/AGnL2UcPVnVUaE6bw0faQUWm3zJOS5k7qV/YvjV/wTO8bv8ABvwJ8S/gx4s/aI8efHjX/ihZ+H/j94F+MHw90/S00vwZc2WoXE/xK+F17pXgWFdYsNGa3trDT/DN7diDTFun0qLTilvazTnFPhHw7xLmlPM8wxGcYnF1JRpV3PM5eyjg1KT+r0aboONGi7RvHW/JHVtOQcaeBHDHGudYfN83xmfYzFVcdGeJlUzZunRy5uo6+FwaWFf1WlKSg3Fyaiow5m2uZ/dP/BJvwRpX7IPx7l1fx5o/xj+Kfg638SRR2Gt2PhTXNOvfgN4slN5Bq+oS6T4Gs421PRPEtvd+T418J67HPDAkUmsWFobz+0YJv0XIcho8M5W8qweLxuIw2EdOhhnj8V9bxH1Pml7HDTryhCVSjhJOVXDQ5bUp1ajV05X/AFLhbhuhwllNHK8LjMxxeGw8q+Gy3+1Mc8biP7M9mlToVasqdN1IYRudXCR5V7KpKbhdyk5f2u2lzHeQpPDIJIZoYJ4ZAjoHimTzI3Cv8wDoUYBwrAEZUEsa9XX+vV/pb5t6u2vvlmgAoAytXgvLrTdStNO1F9J1C5sLu2sNWjtra8k0u8nguYrXUo7O8V7S7kspWS5jtbtGtblkFtOpjkkBPx2793f71bzXm2w/H+n/AF93W5/EP/wVL/4IzfFb4QeKPh78VPhV+0D8a/2pfiJ8bvifrV58f9a+Jeh+Er3xfp3h6RLCefx9oCeEPBNrbXl5YFJtC0/w/eGLSrGwfSNN0HTYLCxCR/kfFPg7w7xRmdXOcdWzjGY6s6aqSxGZOcKdGnF06OGw8Hh7UaEIfw6d3GMYRipN81/w3izwH4R4y4ho5pm+Jz3GVsdibY2eJzWdT2GGhSqOlhssm8LbL6MZxhaN3TUIxpvmlKEn6V/wR88J6N+yL8apLjx/pfxg+JnhabxE+n+H/HNr4Y12x/4UX4kuoruw1zTr/S/BVklvqvhLxQ15FJ4s8O67HO2h3Sw6zY2scAvoH/RskyajkOWYbL6WIxdenQpU6NP63iHiJ06dGMo04Qk4RaiopWutbJWvG7/V+HuH6HDGU4XJ8PicdiaOCo0sNQnmGKli8TDDUIuFGi68owk6dON1BSV0nu7n9n8LK8MbowZHRHRhuwyMCyt83zfMpz83OevJJr1j2ySgAoA/kC/Y0/5XSP8Agrp/2YB8NP8A1A/+CWdAH9fUgzFIMZyjDHqMSD0PX6HtwcNQkpe69YysmtdU5VU9bp7N9b67p6ispJxcVNSVnBuykm6qcW76KWqbvpd66Jv8u/8AgrB8SfFPgv8AZN8S+CvA/wCxX4x/bf8AFvxdlHhTRfhTpvwl1X4ofDLSbvTzDrMPjj40aTZ21zEPCnhi8tLDUtM0Q4v/ABX4jhsdH0+S2hGoava+LmmJxtDLMwq5RCpj8bh6c44HA8tNRnXlKUYwlOvGnFQg5Oac6jipKKkpK55WfYvNcJlOLr5NgXmGY0aM1gMDF4eMKlaXPFRqzxE6VLlp2crzqKN1BNtPX/O1l8M6x4R+KevaRr3wA8ReI/iB8MPEd5/wsj4S6n8I9at7vQNSvdcl1C/0fVPCUGkxR/D7VE1SA3XhGK3tba20ieG1gS2bRhNb1/PnBNDxYyzi7McwzbhmnjMJmdbDrM4qpldOWE9nUrum8DKnWpKdOlKo512+adSkuWCc7H8keH9Dxiyzj7Ns24g4Up47Lc1xVKOe4TnyqlHAxp1MQ6E8unh8Vh5zpwlUqPFtVKkqlOMYU+ao7H6G/tl+N/id8bP2evhH8Rda/ZH8T6X8M/hBFp+ieK/2rPEf7PGr6b4wexi1QW3w1+G3jL4vi0nGleEPAl74p1LSrTQY3tZr/WdUsm1q4mitra3f7Dxlo8Y5jkNfBcMZMsZl9ahGtm+b1q2AjjacV7ssvy7CTqUqqpQlLlxFaVBuc6FNQqyT55/feP0ePs1yCrQ4L4d5cv8AqqnmuZ03galZ0EqUFgsFhsXiKleEVLkVeoqHNOdJ8lVxlzPT/wCCQni34g/DD9qH4bWfwq+F3/CHeJ/E13Z6r4M+JfjHwpqfgrwX4x0cWdxqK/Dr4geONR077A9p4p0y+ubTwJrckj3Et7fW2m3Fyt4NPun+m8NcVxi8hpYbibLfqTo0eShLDvAcuZ01qozhCc3SlBLn5qipXnHSTukfceEFXjGnw59Q4v4YWUYjCYWnHDZlh6+XSWcQSThGpSw2KqrDYim+apiOejRhOmkqU3UXIf6MmmPcyafaS3lmNPu5ba3lurETx3Is7mSIPPafaYgsdx9mlLw+fGqxy7PMRFVsH9GjJzipOLg3FXhLlvF+9eLcW4txtZuLcW7JSkotn6pSjaC91wbjGUo3b5Zy5nJXbeie1nbV2bWru0ywoAKAON+IXi+L4feAvGHjmfw74t8WxeE9A1TX28LeAfDl94q8c+IzplpcXaaF4R8M6eDd654g1V4VstJ06Ep597NAss0UJkuBMpOMZSScpJPkgnFOcvf5YJy0vN6Lmaj7y5pKKciJz9nTqVPZuq6cJTVNKPNNwVRqMVJ25m0lG73e6vJn+aD/AMFB7Dx74s/aK1rx/wDE39hbxR+xbD8btY1pvhP8Gl+BupeCtW8QWUHik6pe6rdN/YdvH8T/AImarr2v2+vfEDWJY57WbWdTTS7GCPQoo/M/mHjrD+J+P4zy3H5dwthMNRwGLlPKU62BqxzCrCcb/wBrSWKnanUSiqfs3TfI5XSvE/jPxNw3jPnHiDk2YZVwfgsLg6GLqVsijPE5XXjmFWMlzYjObY2p7L2kXBQpOdKSVSpH2SajGP0Z+zd8QPjF4k/Zg+J/7NPw2/YN174na5runJd6f8OL39l3V/Hngvwh4w027khsfj94E8I3NrINK8XW+leIfEdvprXdpNp2jeIb27ubtLmCGwFx+2YvH8V1+EFN5N7XP6eE9lDK6lTAPD0cU60oyw/OqqjUp4em/r8Je0nGblGlzTqx9kf0VjcdxLjeBK9TB8I0q3EiwHspZHisTQjg8NjPaWjVxc1j408TSTvUoQwdebdZ044lfV1WR+a/wkmsvCPj2y8W6R8E/FnxFg8D6zY+G/EFtp3w38Qa34h8GavpQuUF1o18bBJdA8aeGYpZnu9LnkjF3A13Z3KR3q20qfkXhRQ8SMuxmZ1uIMopRyXF4nEVsTjf9ihiaGZVKtWdOnSoUarq1KFeo6kZShS9nSjGHNJJ8x+E+CNLxQyPM84lxRkLp5VjMzxtbE42X9nKpgc4xFao8TDD0sNU+tSoZhWuqr5KmGpKlTdOVKk9f9ND9hnxV8S/F37MHww1X4oXHhnVNZ/sPT7bSfFPhXXLXWNP8W+ForK3/sDWr1Le1tTo/iBLJ103xHotxCtza61Z3jzBZ3lhX+j4pVYKez5U3fR3vJdU3qn30d9nJn9czqRXs3G751FyVno2pt76dnve7fTmv9dqcrn6fzcHv/sj/wDXnNf1+LX6X9Gu5X9fi1+l/RruLQAUAfyO/wDBxD4o+InxavX+GPg79gD4keLvCHwU8M33iX4m/tu61+z7rXiDS/C/heZbLxbrHgr4O+PX0m6Hh/wvbnSrHVPiv44s5od8thH4a0Zh9n1nUa/L/E+fF1fIcRgeF8goZo69KtHEYzEV8KnhaPJONSWEo1MRTn9aS51Rc6c4SlGP2VKUvxfxorcd4nhfGZZwVw1QzKSo1547McTiMBS+pYedBurUy+jiMRTqV8Y4QlyNUqqjNR91Xnzfzg/sZ/EfWPgt8W/D3xU8D/CLxvqk19fyat4V+LPhX4X6nqmr6PrVnqkkj2VnrTWsEGv+EPEOqaOlndWVxdMNO1owbGOlSzeV5HhBLjrLsonlefZTHD5fHDSjl+KpTy9V8enWdSphsdT9rNwrUW6tWM+SnCVKjTpubqJQl4HgP/r3leQLJ+MOHKeEwsqDnk2ZQlhvb1aTqt/VMXHC4uc1i3VVaUKlWlCkqUacJz5ocrs/tu+G/F17+0XqmqePf2Qr79mK++Ls1trPwi+D3hz9nzWvh1pet+F9N1C8ubXWvD3hGbTGbx3f32qNqWr+MNdvGuptW1K5mScwaX/Z1oPiOL8L4pY7j/A4jIsgozw2ClNZVTqvLVTzCm6041MTi6866VOWLhClJxnOEqSk/wB1Gbmo/nfH2X+L+I8UsszHJuD6OFwOBr4r+yaEK2VVXjqdSUaeY/2tia+LrUvbY6lGhRq8lWlSpWisv9k1Ko/rT4R+NfjL8Sf2P/H37M/ww/YK8S/ETUZVs9R0/wAJXH7MOt+PdE+DWt2y3Wiaz8X/AIS6Rd2U7+GNe1/wnr+r6VperXthc22g3d3NJtn1S2gkm/ac8zbjjEcIYipgMmpPOJYaGGWDrSy90lUjzRxCclVjeFKdJwhOLalCzipX53/QOe4viyXANKtw/wAEQ/1jnBU5ZLi8Zg54LB4y9aNSpiZTzPkrU3adWl7CtUjapBKne6Pzn+A+t2fhD4gaN8R/D3wb8W+PdN0bUbfSbvxB4d+HWv8AiHXvBGr6TYwwRa14X1iO0M1l4h0Ozv4rfX9FlnX7VYTNFGE1eIPJ+XeD1HxByfF1sHnfD1PE5VmFWrOGP9tl9PFZdjacVUnNwWIg54WLhRlZ05ymnUUIyk1f8b8Bl4m8P1quBz7hyGPyHMsylUwmb3y2jjMBmFKVOpiJypRr0qn1GPJRnCNShN1L1PZt6KX0n+3t4n+K3xf8QeEf2g/jn+xdqf7Ofhz4laVL4Y8M+OLf4G6l4N1L9ofxZf2dqdc+IfjTxjb6Yv8AwnXxL8aWdhZXkukQXL6dodpbiw0u3nuk1C5k5vFXD+JWbZ3k+GyjIcNSy/BZjGpgq8quX1Kua5jzTlGpin7eawuFk/aOhTn7FQhN+2V7W87xwwfinn3EmU0cm4YpUcswOdU6uAxDlgatTOMy9rVlCriWsTP6thW3N0IT9jGFOSVaMUon62f8G/Pjb4seE/j1d/Dfwd8KbX4eGGy2/ELRvFuhS/DDTPir4UvbyC1uvFPgxdU02OLUfif4QntYdU1/RLFYJNT0yKW+gJ0+5u4rb9l4XxGaYrI8LLOeGKWS46m4xdDDYiDoVFF+9OyxtfSWtRRbTTVmtLn9HcGYvNsTkOHqZvwzS4Zza0I4rLsPWhVoTUIyg62DlHGYuFKMrOco1Kim/wB8lDZy/t0tyxMgbPGzBI2hgTIMhSSyg7QcEnHKkhw9fVX1kuZNpRvFXsneSbTta0nbVN7Lvd/Y688lyq3LD94mrTd5pxtdvmha7lbllzpxbVyxQAUAFABQAUAFABQAUAFABQAhAw3AyR6Dn73/ANb8+pIpO9nbfpr5vr6W+V1e4uj9NP8Ayb/Nf0jgviX8MfAXxi8Gap8P/iZ4YsfF/hHWJLGTU9A1N7pbK9fT76O/snlNnc2s+YLuCG4jCzKvmIocMu7IrxTSvrdN3s7N2eqd9kra3878zk02k0tL3TtvZ763vr63XdnXWtomn2FvY2MIgt7K3gtLO3VvkitreMQwQozMTtiiRUBclsYJLMXY1BRi7czasldq9kuZabO9ra335urk3Li46QldKnJLp7yhUUN335d9E23d2bfD+GfhN8O/CPjjxx8S/DvhLT9J8dfElNFXx34ktpbtr7xH/YNvJaaOt8s91NbAafbyNFB9mhhGxjvLMoJVr395rfa6TV5Wsryto1vtZa30CmpunTdSVqipwU1q1zJapPXS/X583Ul+Jvws8AfGXwhqHgL4n+FtP8Y+EdRuNPu7zQNUe7WxubnTL1L+wmk+yXNtNut7qGKZFEoTeAHV1BBSvdqW3R633fZ32tf56lJXum7LTu76u+21lrbXdq973763gitreG2gQRQ28UUEMaklY4ok8uNASSSERVUEkkg8kkE0/wCvz/yv811TD+vz/wAr/NdUyWgAoAKAGAfM34YPHOMduSPz9etK395+ll3fl2167tXve65d2pWbtfTs3b8LP707s8++Jnwp+Hnxl8ML4N+KHhPTvGPhpdV0rXBo+qPdrbDVtGumu9Lvs2dzbS+bZzkSwgyeXu/1iOBiiMbXvJvZJPteXm9vyk9NHc1vbpbfzvtv21/C9z0FAQpDZPpk7uMAdSSe3U5Jyck4p/1+fm/L8Rj6ACgAoD+r/f8A8D+mxpUHjGeg+gBPbp3PbofWk7paa7emnNvr6W9Za91Hms+bv99r229f+HbZ518SfhP8PPjDo2n+Hfib4UsPGGiaR4h0bxZpem6nJdrb2viPQpJ5dI1aP7JdWz/arCSaVoPMZof3r+ZE4GKIuSW1ntdO3WT13erUerer6JjVmmpLS1v8Wr/FX69L2d2eincRgZGQeh574AOeMk9fpyAKa0u9G7WSd7fa10fp569WiGpN2u0t+a+t7y0s31TTtsrLW55z4I+E3w8+G+r+O9d8D+E9P8O6r8SvETeLvHd/ZS3rz+JfEzpLFJrGoG6vLhVuXjba32dYoyHJKMyjMqN3KTlyy06O0knK17OXTorWuleVnfRWipPWUmlprrrP+aTta/p7yVrRD4i/Cb4efFzTNF0f4leFLDxdpvh3xLpHjDRLPUpb1ItP8UaG88mj61B9ju7djdWDzStEJC0OJCDE2XyRc1dPRO131aXNtZ3V9Hf1T2RDipr3vkltu/PtZ9Ve2jfNI79kn4wx4YZw2OPmyeTyCcYHHUdAGy4xSk3KTs4SS62lzRs0raaJt9LWitXJtWkoz95t+zkoLS7nzKzbeiaSbvqrO26PPfAnwm+H3wxvvGupeAvCen+Gr74h+J7nxl43urGW9eTxF4ovFK3etX/2u7uR9qnTh1gEUOSGEeRUpStS5m/hftEmvis7at7Xs3a+yjdRRdn7q53y0qcIQWvvK9S8WrNWirSV23eWknKOvpf+fyzjv/nJ5JyTYBQAUAH+f5e/sP07jJAK8gnCkxjLFvulgOMtzktjHTvnGBjrioqKvzO+1rpu93Jvba1o+qbXRsyqKooVnS96bhH2aukufn95Xbsvdbbfqrtu5wfw7+E/w6+E8PimD4d+E9P8KxeMvFOqeNvFCafJeONa8WawYv7V1y6N3dXJF3e+RD5wiMcPyDbGOcz311dr9rpy2V3be+nVu99zZ6yk7t3tq79G/PbtZLTRra3olAgoAKAP5Av2NP8AldI/4K6f9mAfDT/1A/8AglnQB/X7/n+fv/nJ565A/r8/Py/PXR3awJwB6gnkg4G/oRyM5HfpnnAwQW+1mv8Agvz8vvvq2nf8Of2pf+COvgfxp4g+O/7RHwbuWuP2kPi5rmn6/rI1C28E+EfDXii4jvba1W18R6jo3hWDULqLSdF89LC6vru61C4uo1lvbq4uJp5Ca7X0/wCDfv319et9SHD3ufmbtZJN6JKU27aaXv8Ade6dj0bw/wD8Egvhc/wU8bfBfxX8U/iRqPgT4yeHfDdl8ZPhnqkPgHxL4F17UtKn0/V1e303WfB11Bb3Wma1ZI9hrlrHFqv2ZY0+1gqjLMo80JR5nHmVrx0ktXqn32t2d9xNe0UlzSi1a8ouzveVnF3fbfe03fXU+f8ARf8AginoGnfGW58MQ+JPEWl/s7aR4C0xfCeuaZrfhyDxzb+NLSW0to9EGiReGo7Cw8OabYxTHT5raJJIjHZxRFSpmopU4UaThBva3na7vql1u35Xsn1LpU4UaThHfTpuk3rdL8H0tu0fuD8KvA178M/AHh3wLf8AjbxP8QH8O2n9n2/irxlJp8/ia+sYpZPsMWq3enWVjBezWNt5Vml48Au7iGOOS8lmummnLStdN31dr9Fd2W//AAbWu9BpWurt66X6avT/AC62tdux6DTGFABQAxw+0hCN3GMkgdWyMgErkEcjJ/AUW0tf59ev9fdrdB+P9Nf18ut2fAn7Y/8AwTv+C/7cfiX4W+JfjDf6nFffB2XVb34ey6TofgyXUvDuta29qNU1nTte1nw9qmsWV1cQ2FjD9ns72GyUW8c5tnuwky5+zV93a1rXdrKUmlvtd7dratp3zlTUm7t6qzV9GryevV6vbtyr7PM/jP8AZb/4JOa94D1WX4h+PPid43+G3xJ8JePtYl+Ht98N/EXhzUrabwTAIE0S81t7/wAOTCS+1WN7uHX9FkVtOltSLcxFJHquSN763tv879/+Bto2k1dvdUekdu61v273+9qyWp598Xf+CI3gvw39q8Q/s1TyDxV8Q/iyni34t2+pjwT4L0S8s/Ed5e3HjXxjY2fhvwnp9tP4mMskctnaPbyWzxvJbhViSNDMaahJzTblaybetrvRN62tbrv11ds40Ywqe0i5c3K4pt/Zd1ba9rbK/bVtH6lfsq/sf6J+yPp/iHw74I+KHxE8U+D9dkW8Twh40udCu9I0TWfMJn1nQX07RNPurC4v4gItStllNjdMIbowLdxtK2n9fi/PqrW2trd30NT7AUbVC+gA/Lf9f9nv6ckg0f1+f+X4rswFoAKAPM/i58N9P+MPwv8AH/wq168NnoPxC8Nax4P16WPTNG1gy+H9etLjTtZsm0zxBp+p6TcrqGnT3NlJHf2N1brHO8giaQVDhdNczu7K+l9G3ppbe1u2u7cm5cVJNXetlp3UpO+71v5/zLe7Pw5m/wCCH3grwV8Q/hV4G+E2o6rpf7O9vouvQeOpl1PwtpWveF72MX8+g2Pgzw9ZeGYtOmsL69kSTUmlhLReddSofNJyKCtZ6931est9977eb1YU4+z5rNtyVpSd7vVvV3d76b3as9W3Jv6T+Iv/AARw+BfxVs/hIPiL8S/iP411X4DaVrmkfBvxH4g074dXvivwRpmuyJJqWlaX4pl8Hf20umStBDFa2b3wisbbdBaGNGlLy6UWnFt2aenTr5d236vfqZzoQmmpN2a26bt7dle6XTo022cF+yR/wSq8R/DRNN+J3jj4o+N/hh8Z9B8Sa8mjn4aa/wCGNY8PP4T3rbaUmpR6t4XuU1IazZecNd0e+aaxdWSEIPL3nRpNW8orre0bpdfPZ/jds0cU4qL2SSXkoqy/DT00dzyfx/8A8EPPA3gi58JQfs1TT2mleKfilJrvxjs72TwZ4Rs7LQdcu/tPibxX4Z03QvCVpZ3XieRixhs2gFq+23jVYoYlWop0o03Ua1c1FNvtFysuvlfytvbWadONJzlFtucYRk23rGDbivlpZO9umrbPpfxd/wAEbvgJ8QfhZ4b+Cnj/AOJPxK8bfDfwd47i+Jng3w14r034c67H4Q8cQ21zax654TvtS8FXN94ecpcSyy2+mzw281w7TyRmRptylRhK6blZ30vpZ8yeluqdn8r3abadGL5leSUr3SdlZ3UtP7ysn6Rvdq5438Gv+CP0+j/EX4heIPG3xG8d+C7Xwl46s774B+LPAfinQH8VXug2z3sya/4lEvhySPR9ejmjsMW1oVtnjaeOWN4zIp0228l8le27833euzNfx2/C/dv+ur0t+5uiWV5pulWFjqGpT6xeWdjZWl1rF3Faw3urXNtbpDPqd5DZQwWcFzfOrXE8VpDFbJM8ggiji2IGBqUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH5YfCb/AIJX/D74S/8ABXD9qP8A4K1ad8WPGGrfED9pv4H+Hvgfr3wkvdE0ODwX4Y0nQdF/Zt0aHXtI1yBzrV5qFzH+zzpE8tteD7Msmu6qqErbWZIB+p9AW0a76f8ApX+f5dncoFFKKaXXv/w39dxNvOck/l7+30x39ScmgfRrv1+/z839+4v+f5/5/L3pW0avv1/8C/z/ABetyYxUb2vrbfy/rzEAx3J+uP6Af596UY8t9b38uz9e39NlC1QBQAUAFACY4Iz6c9+CT+v+HfJo/r+v6/ETV1a/Va9dG/zTt92t0G0A56njn6Z5+v8A9bjrSto1ffr/AOBf5/i9bjWi1d/Pbv8A8D/NtsX8c+/5+gH+cd81MYcrvzfgv73dvv17sA/H/Pr0z/npmrFZ33b07Lu+1v6truFAwoAKACgBoUc5JOTn0xy2MYPoe+fckmjvrf7tN9rJfjfp1uKK5b6t3b/NvT5aea3d7NOxjp09OMdTz0/zk8ZzmHC7bvv5evn8/u8xh+P4/wCR/n61SVla99vw5v8APrrq9WJrRq++nTvLyvs+/bqncpjSsrei+7m/z/Ls7g47k/XH9AP1pRXKmr3v/wAH89OvfUO+t/u032sl+N+nW4fif0/qKTjfq9PTvft/XVsPn+Xn3X9aeYVQBQAUAFABQAUAFABQAUAFABQB/9k=" alt="" />

【数据范围】
对于30%的数据,0<n≤100,0<m≤100,ki=1; 
对于50%的数据,0<n≤2,000,0<m≤5,000,0<ki≤100; 
对于70%的数据,0<n≤50,000,0<m≤100,000,0<ki≤1,000; 
对于100%的数据,0<n≤500,000,0<m≤500,000,0<ki≤5,000

题解:

在此引用神犇nancheng58的题解,orz··

比较简单的差分约束. 但要注意源点的选取. 由约束条件可得 (1)dis[y+1]-dis[x]>=z. (2)0<=dis[i]-dis[i-1]<=k[i]. 因为是跑最长路. 所以要把(2)式拆成 dis[i]-dis[i-1]>=0. dis[i-1]-dis[i]>=-k[i]. spfa松弛即可

差分约束详解:

比如有这样一组不等式:

X1 - X2 <= 0

X1 - X5 <= -1

X2 - X5 <= 1

X3 - X1 <= 5

X4 - X1 <= 4

X4 - X3 <= -1

X5 - X3 <= -3

X5 - X4 <= -3

全都是两个未知数的差小于等于某个常数(大于等于也可以,因为左右乘以-1就可以化成小于等于)。这样的不等式组就称作差分约束系统。

这个不等式组要么无解,要么就有无数组解。因为如果有一组解{X1, X2, ..., Xn}的话,那么对于任何一个常数k,{X1 + k, X2 + k, ..., Xn + k}肯定也是一组解,因为任何两个数同时加一个数之后,它们的差是不变的,那么这个差分约束系统中的所有不等式都不会被破坏。

差分约束系统的解法利用到了单源最短路径问题中的三角形不等式。即对于任何一条边u -> v,都有:

d(v) <= d(u) + w(u, v)

其中d(u)和d(v)是从源点分别到点u和点v的最短路径的权值,w(u, v)是边u -> v的权值。

显然以上不等式就是d(v) - d(u) <= w(u, v)。这个形式正好和差分约束系统中的不等式形式相同。于是我们就可以把一个差分约束系统转化成一张图,每个未知数Xi对应图中的一个顶点Vi,把所有不等式都化成图中的一条边。对于不等式Xi - Xj <= c,把它化成三角形不等式:Xi <= Xj + c,就可以化成边Vj -> Vi,权值为c。最后,我们在这张图上求一次单源最短路径,这些三角形不等式就会全部都满足了,因为它是最短路径问题的基本性质。

话说回来,所谓单源最短路径,当然要有一个源点,然后再求这个源点到其他所有点的最短路径。那么源点在哪呢?我们不妨自已造一个。以上面的不等式组为例,我们就再新加一个未知数X0。然后对原来的每个未知数都对X0随便加一个不等式(这个不等式当然也要和其它不等式形式相同,即两个未知数的差小于等于某个常数)。我们索性就全都写成Xn - X0 <= 0,于是这个差分约束系统中就多出了下列不等式:

X1 - X0 <= 0

X2 - X0 <= 0

X3 - X0 <= 0

X4 - X0 <= 0

X5 - X0 <= 0

对于这5个不等式,也在图中建出相应的边。最后形成的图如下:

图中的每一条边都代表差分约束系统中的一个不等式。现在以V0为源点,求单源最短路径。最终得到的V0到Vn的最短路径长度就是Xn的一个解。从图1中可以看到,这组解是{-5, -3, 0, -1, -4}。当然把每个数都加上10也是一组解:{5, 7, 10, 9, 6}。但是这组解只满足不等式组(1),也就是原先的差分约束系统;而不满足不等式组(2),也就是我们后来加上去的那些不等式。当然这是无关紧要的,因为X0本来就是个局外人,是我们后来加上去的,满不满足与X0有关的不等式我们并不在乎。

也有可能出现无解的情况,也就是从源点到某一个顶点不存在最短路径。也说是图中存在负权的圈。这一点就不展开了,请自已参看最短路径问题的一些基本定理。

其实,对于图1来说,它代表的一组解其实是{0, -5, -3, 0, -1, -4},也就是说X0的值也在这组解当中。但是X0的值是无可争议的,既然是以它作为源点求的最短路径,那么源点到它的最短路径长度当然是0了。因此,实际上我们解的这个差分约束系统无形中又存在一个条件:

X0 = 0

也就是说在不等式组(1)、(2)组成的差分约束系统的前提下,再把其中的一个未知数的值定死。这样的情况在实际问题中是很常见的。比如一个问题表面上给出了一些不等式,但还隐藏着一些不等式,比如所有未知数都大于等于0或者都不能超过某个上限之类的。比如上面的不等式组(2)就规定了所有未知数都小于等于0。

对于这种有一个未知数定死的差分约束系统,还有一个有趣的性质,那就是通过最短路径算法求出来的一组解当中,所有未知数都达到最大值。下面我来粗略地证明一下,这个证明过程要结合Bellman-Ford算法的过程来说明。

假设X0是定死的;X1到Xn在满足所有约束的情况下可以取到的最大值分别为M1、M2、……、Mn(当然我们不知道它们的值是多少);解出的源点到每个点的最短路径长度为D1、D2、……、Dn。

基本的Bellman-Ford算法是一开始初始化D1到Dn都是无穷大。然后检查所有的边对应的三角形不等式,一但发现有不满足三角形不等式的情况,则更新对应的D值。最后求出来的D1到Dn就是源点到每个点的最短路径长度。

如果我们一开始初始化D1、D2、……、Dn的值分别为M1、M2、……、Mn,则由于它们全都满足三角形不等式(我们刚才已经假设M1到Mn是一组合法的解),则Bellman-Ford算法不会再更新任合D值,则最后得出的解就是M1、M2、……、Mn。

好了,现在知道了,初始值无穷大时,算出来的是D1、D2、……、Dn;初始值比较小的时候算出来的则是M1、M2、……、Mn。大家用的是同样的算法,同样的计算过程,总不可能初始值大的算出来的结果反而小吧。所以D1、D2、……、Dn就是M1、M2、……、Mn。

那么如果在一个未知数定死的情况下,要求其它所有未知数的最小值怎么办?只要反过来求最长路径就可以了。最长路径中的三角不等式与最短路径中相反:

d(v) >= d(u) + w(u, v)

也就是 d(v) - d(u) >= w(u, v)

所以建图的时候要先把所有不等式化成大于等于号的。其它各种过程,包括证明为什么解出的是最小值的证法,都完全类似

最后补充二点:1.注意源点在题目中的实际意义2.求最大值用最短路,求最小值用最长路

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
using namespace std;
const int N=5e5+;
const int INF=0x3f3f3f3f;
queue<int>que;
int n,m,k,dis[N];
int tot=,first[N],go[N*],next[N*],val[N*];
bool visit[N];
inline int R()
{
int i=,f=;
char c;
for(c=getchar();(c<''||c>'')&&c!='-';c=getchar());
if(c=='-')
{
i=-;
c=getchar();
}
for(;c>=''&&c<='';c=getchar())
f=(f<<)+(f<<)+c-'';
return f*i;
}
inline void comb(int u,int v,int w)
{
next[++tot]=first[u],first[u]=tot,go[tot]=v,val[tot]=w;
}
int main()
{
// freopen("a.in","r",stdin);
memset(dis,-,sizeof(dis));
n=R();
m=R();
for(int i=;i<=n;i++)
{
k=R();
comb(i,i-,-k);
}
for(int i=;i<=n;i++)
comb(i-,i,);
int l,r,c;
for(int i=;i<=m;i++)
{
l=R();
r=R();
c=R();
comb(l-,r,c);
}
dis[]=;
visit[]=true;
que.push();
while(!que.empty())
{
int u=que.front();
que.pop();
visit[u]=false;
for(int e=first[u],v;e;e=next[e])
{
v=go[e];
if(dis[v]<dis[u]+val[e])
{
dis[v]=dis[u]+val[e];
if(!visit[v])
que.push(v);
}
}
}
cout<<dis[n]<<endl;
return ;
}

算法复习——差分约束(ssoi种树)的更多相关文章

  1. 鉴于spfa基础上的差分约束算法

    怎么搞?        1. 如果要求最大值      想办法把每个不等式变为标准x-y<=k的形式,然后建立一条从y到x权值为k的边,变得时候注意x-y<k =>x-y<=k ...

  2. [ZPG TEST 115] 种树【差分约束】

    4. 种树 (trees.pas/c/cpp) [问题描述] 一条街的一边有几座房子.因为环保原因居民想要在路边种些树.路边的地区被分割成块,并被编号为1..n.每个块的大小为一个单位尺寸并最多可种一 ...

  3. Codevs 1768 种树 3(差分约束)

    1768 种树 3 时间限制: 2 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 为了绿化乡村,H村积极响应号召,开始种树了. H村里有n幢 ...

  4. 差分约束算法————洛谷P4878 [USACO05DEC] 布局

    题目: 不难看出题意主要是给出ml+md个格式为xi-xj<=ak的不等式,xi-xj为i,j俩头牛的距离,要我们求x1-xn的最大值. 经过上下加减我们可以将这几个不等式化成x1-xn< ...

  5. P1250 种树(差分约束 / 贪心)

    题目描述 一条街的一边有几座房子.因为环保原因居民想要在路边种些树.路边的地区被分割成块,并被编号成1-N.每个部分为一个单位尺寸大小并最多可种一棵树.每个居民想在门前种些树并指定了三个号码B,E,T ...

  6. P5960 差分约束算法模板

    差分约束 差分约束,一般用来解决有\(n\)个未知数,\(m\)个不等式方程的问题,形如: \[\begin{cases} \ x_{a_1}-x_{b_1}\leq y_1\\ \ x_{a_2}- ...

  7. POJ-3159(差分约束+Dijikstra算法+Vector优化+向前星优化+java快速输入输出)

    Candies POJ-3159 这里是图论的一个应用,也就是差分约束.通过差分约束变换出一个图,再使用Dijikstra算法的链表优化形式而不是vector形式(否则超时). #include< ...

  8. 题解——洛谷P1250 种树(差分约束)

    一道看一眼就知道差分约束的题目 但是最短路spfa的时候注意松弛条件是 if(dis[u]+w[i]<dis[v[i]]) dis[v[i]]=dis[u]+w[i]; 不能写成 if(dis[ ...

  9. ACM差分约束笔记

    https://www.cnblogs.com/31415926535x/p/10463112.html 很早之前学最短路的时候就看了一眼差分约束,,当时以为这种问题不怎么会出现,,而且当时为了只为了 ...

随机推荐

  1. Sqlserver 2012 Always on技术

    使用了Sqlserver 2012 Always on技术后,假如采用的配置是默认配置,会出现Primary server CPU很高的情况发生,比如默认配置如下: 需要自定义来解决这个问题. 我们先 ...

  2. Nodejs + Jshint自动化静态代码检查

    1.   目的 提交代码前能够自动化静态代码检查,提高代码质量 2.   准备 1.    Nodejs安装: 官方地址:http://nodejs.org/ 安装说明:根据电脑配置下载对应的版本进行 ...

  3. Robot Framework(十三) 执行测试用例——创建输出

    3.5创建输出 执行测试时会创建几个输出文件,并且所有这些文件都与测试结果有某种关联.本节讨论创建的输出,如何配置它们的创建位置以及如何微调其内容. 3.5.1不同的输出文件 输出目录 输出文件 日志 ...

  4. 如何解决webpack中css背景图片的绝对地址

    在项目开发中,一般写相对路径是没有问题的,但是在项目比较大的情况下,我的scss文件可能为了方便管理,会放在不同的文件夹下,有的可能又不需要放在文件夹下,比如我的scss文件结构如下: module ...

  5. 快学UiAutomator配置编辑环境

    Java环境配置 1.下载jdk1.6+包 2.安装jdk,默认安装即可 3.成功安装之后,进行测试是否真的成功安装,点击[开始]----[运行]----输入 CMD,在命令提示符里面输入“Java ...

  6. Mac 安装和卸载 Mysql5.7.11 的方法

    安装 去http://www.mysql.com/downloads/, 选择最下方的MySQL Community Edition,点击MySQL Community Server的download ...

  7. CPP-STL:STL备忘

    STL备忘(转) 1. string.empty() 不是用来清空字符串,而是判断string是否为空,清空使用string.clear(); 2. string.find等查找的结果要和string ...

  8. 两个input标签之间间隙问题的解决

    <input type="text"> <input type="button" value="搜索"> 代码显示效 ...

  9. ★房贷计算器 APP

    一.目的 1. 这是一个蛮有用的小工具 2. 之前看了很多demo,第一次来完全的自己实现一个APP 3. 完成之后提交 App Store 4. 作为Good Coder的提交审核材料 二.排期 周 ...

  10. 【dp】数字游戏&寒假祭

    区间DP 题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按 ...