NOIP2017 Day1 T3 逛公园
题目描述
策策同学特别喜欢逛公园。公园可以看成一张\(N\)个点\(M\)条边构成的有向图,且没有 自环和重边。其中1号点是公园的入口,\(N\)号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间。
策策每天都会去逛公园,他总是从1号点进去,从\(N\)号点出来。
策策喜欢新鲜的事物,它不希望有两天逛公园的路线完全一样,同时策策还是一个 特别热爱学习的好孩子,它不希望每天在逛公园这件事上花费太多的时间。如果1号点 到\(N\)号点的最短路长为\(d\),那么策策只会喜欢长度不超过\(d + K\)的路线。
策策同学想知道总共有多少条满足条件的路线,你能帮帮它吗?
为避免输出过大,答案对\(P\)取模。
如果有无穷多条合法的路线,请输出\(-1\)。
输入输出格式
输入格式:
第一行包含一个整数 \(T\), 代表数据组数。
接下来\(T\)组数据,对于每组数据: 第一行包含四个整数 \(N,M,K,P\),每两个整数之间用一个空格隔开。
接下来\(M\)行,每行三个整数\(a_i,b_i,c_i\),代表编号为\(a_i,b_i\)的点之间有一条权值为 \(c_i\)的有向边,每两个整数之间用一个空格隔开。
输出格式:
输出文件包含 \(T\) 行,每行一个整数代表答案。
输入输出样例
输入样例#1:
2
5 7 2 10
1 2 1
2 4 0
4 5 2
2 3 2
3 4 1
3 5 2
1 5 3
2 2 0 10
1 2 0
2 1 0
输出样例#1:
3
-1
说明
样例解释1
对于第一组数据,最短路为 \(3\)。 \(1 – 5, 1 – 2 – 4 – 5, 1 – 2 – 3 – 5\) 为 \(3\) 条合法路径。
测试数据与约定
对于不同的测试点,我们约定各种参数的规模不会超过如下
测试点编号 | \(T\) | \(N\) | \(M\) | \(K\) | 是否有0边 |
---|---|---|---|---|---|
1 | 5 | 5 | 10 | 0 | 否 |
2 | 5 | 1000 | 2000 | 0 | 否 |
3 | 5 | 1000 | 2000 | 50 | 否 |
4 | 5 | 1000 | 2000 | 50 | 否 |
5 | 5 | 1000 | 2000 | 50 | 否 |
6 | 5 | 1000 | 2000 | 50 | 是 |
7 | 5 | 100000 | 200000 | 0 | 否 |
8 | 3 | 100000 | 200000 | 50 | 否 |
9 | 3 | 100000 | 200000 | 50 | 是 |
10 | 3 | 100000 | 200000 | 50 | 是 |
对于 100%的数据, \(1 \le P \le 10^9,1 \le a_i,b_i \le N ,0 \le c_i \le 1000\)。
数据保证:至少存在一条合法的路线。
解题报告
题意理解
这道题目题意就是让你,统计一下长度为\([d,d+k]\)这个区间内从\(1->n\)的路径总数.
30pts
暴力统计
我们发现这道题目有三个点,也即是数据点1,2,7这三个点都是只需要我们找最短路的路径个数.
既然如此的话,我们不妨在最短路算法中,再开一个额外的数组统计路径个数,去拿到这三十分.
1.如果发现松弛操作的两种路径相等,也就是a->c=a->b+b->c,那么我们就将搜索到的点的路径数加上当前点的路径数,即:
if(dis[i]==dis[k]+ver[k][i])
cnt[i]+=cnt[k];
2.如果我们更新了搜索到的点到起点的最短距离,也就是a->c < a->b+b->c ,那么我们将到达改点的路径数改为当前点的路径数,也就是
if(dis[i]>dis[k]+ver[k][i]){
dis[i]=dis[k]+ver[k][i];
cnt[i]=cnt[k];
}
70pts
暴力思想
我们其实可以惊奇地发现,就是我们的\(k \le 50\),这说明什么就是我们完全可以暴力地去统计,长度为\(d,d+1,d+2,d+3,...,d+K\)的所有路径.
综上所述我们可以通过搜索算法,去一步步暴力地搜索,找到符合条件的路径.
但是我们发现这个搜索显然复杂度太高了.
各大剪枝
我们对于当前这一步而言,如果说它花费了\(w\)点代价,然后接下来我们统统都以最优秀的最短路走到终点,花费\(s\)点费用.
然后我们惊奇地发现\(w+s>d+k\),那么显然这一步是不合法的,因为它的最小花费代价都大于了我们的最大上限路径长度.
综上所述,第一个剪枝,就是我们的可行性剪枝.
但是我们如何统计一个点到终点的距离呢?难道我们要每一次都跑一遍最短路算法统计吗
其实我们可以通过建立一个反向图,来达到目的地.
- 什么是反向图?
我们以样例为例子.
这张图叫做原图.
这张图就是我们的反向图.
所谓的反向图就是将方向统统反过来,原来是a->b,现在改成b->a
- 反向图有什么用处
我们发现反向图最大的用处,就是统计一个点到终点的距离.
因为此时我们的起点是原来的终点N,而现在的终点变成了原来的起点1.所以我们最短路过后,每一个\(dis[i]\)表示为节点\(N\)到\(i\)的距离.
综上所述,我们就这么巧妙地处理了第一个可行性剪枝.
但是我们现在依旧发现了一个问题,我们的时间复杂度还是太高了,所以我们不得不进行记忆化剪枝,也就是利用了了动态规划的思想.
首先我们观察一下,路径长度为\(d+1,d+2,d+3,d+4,...,d+K\)的路径,他们具有以下特征.
对于长度为\(d+1\)的路径而言,我们可以认为它是最短路情况下,多走了一点冤枉路.
对于长度为\(d+2\)的路径而言,我们可以认为它是最短路情况下,多走了二点冤枉路.
对于长度为\(d+3\)的路径而言,我们可以认为它是最短路情况下,多走了三点冤枉路.
将以上路径转化后,我们发现完全可以通过动态规划的思想去处理本问题.
我们设\(f[i][j]\)表示为,当前到达了点\(i\),已经多走了冤枉路\(j\).
那么我们发现状态转移方程也迎刃而解了.
0 \le w \le K \\
(u,v)为一条边 \\
ver[u][v]表示u到v的距离.\\
w表示当前走了w点冤枉路
\]
我们解释一下上面的状态转移方程的核心点.
\]
对于下面这个式子而言,它表示为从起点走到\(v\)所需要花费的最少长度.
\]
那么我们的一条最短路径,且是从\(u\)走到\(v\)所花费长度为.
\]
然后我们的从起点走到\(u\)所花费的最短长度显然为.
\]
既然如此那么我们从起点走到\(v**\)的最短路径,减去,我们从起点走到\(u\)然后再走到\(v\)的最短路径,就是我们的多走冤枉路.**
\]
综上所述,这就是我们的思路,那么最后的答案,显然就是.
\]
100pts
经历了千辛万苦的你,发现如果按照楼上的思路写代码的话,你发现居然只有70pts.
那是因为你忽略掉了-1这种无解的情况.
而-1这个点,其实就是题目中出现了长度为0的一个环 简称0环.
如何判断呢?
- 拓扑排序判断
- Tarjan算法判断
- 搜索的过程中,如果一个点两次进入我们的最短路,那么显然就是0环.
显然这道题目我们使用第三个算法判断.
代码解释
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;//数据范围
const int inf=1e9;//最大值
int t,n,m,k,p,ans,flag,vis[N],dis[N],dp[N][55],vis_dp[N][55],x,y,z;//变量
struct node//最近get到的结构体内置,好好玩啊.模板标记
{
int cnt,edge[N<<1],ver[N<<1],Next[N<<1],head[N];//记得边要乘以2,因为要建立反向图
void init()//初始化
{
cnt=0;
memset(head,0,sizeof(head));
}
void add_edge(int x,int y,int z)//建图
{
edge[++cnt]=y;
ver[cnt]=z;
Next[cnt]=head[x];
head[x]=cnt;
}
void spfa(int s)//SPFA,NOIP是不会卡掉我们的.
{
int i,x;
queue<int>q;
for(i=1; i<=n; i++)
{
vis[i]=0;
dis[i]=inf;
}
q.push(s),vis[s]=1,dis[s]=0;
while(q.size())
{
x=q.front();
q.pop();
vis[x]=0;//出来了
for(i=head[x]; i; i=Next[i])//遍历所有的出边
{
int y=edge[i],z=ver[i];
if(dis[x]+z<dis[y])
{
dis[y]=dis[x]+z;//更新
if(vis[y]==0)
{
q.push(y);
vis[y]=1;//标记
}
}
}
}
}
} g1,g2;
void clear()
{
ans=0;
flag=1;
g1.init();//初始化很重要
g2.init();
memset(dp,-1,sizeof(dp));
}
int dfs(int x,int k)
{
int i,j;
if(~dp[x][k])//记忆化搜索
return dp[x][k];
vis_dp[x][k]=1;//标记进入了最短路径
dp[x][k]=0;
for(i=g2.head[x]; i; i=g2.Next[i])
{
int y=g2.edge[i],z=k+dis[x]-(dis[y]+g2.ver[i]);
if(z>=0)//如果是在指定偏差区间内的
{
if(vis_dp[y][z])//之前已经进入过最短路径了,那么显然是无解了.
flag=0;
dp[x][k]+=dfs(y,z);//统计
dp[x][k]%=p;//取得取模
}
}
vis_dp[x][k]=0;//已经从最短路径中出来了.
return dp[x][k];//该返回了
}
int main()
{
scanf("%d",&t);
while(t--)
{
clear();
scanf("%d%d%d%d",&n,&m,&k,&p);
for(int i=1; i<=m; i++)
{
scanf("%d%d%d",&x,&y,&z);
g1.add_edge(x,y,z);
g2.add_edge(y,x,z);//不是无向边,是建立反向图
}
g1.spfa(1);
dp[1][0]=1;
for(int i=0; i<=k; i++)
{
ans+=dfs(n,i);//每一个有冤枉路的路径都要加入
ans%=p;//取模快乐
}
dfs(n,k+1);//再来一下判断
if(!flag)//无解了
puts("-1");
else
printf("%lld\n",ans);
}
return 0;
}
NOIP2017 Day1 T3 逛公园的更多相关文章
- NOIP2017 Day1 T3 逛公园(最短路+拓扑排序+DP)
神tm比赛时多清个零就有60了T T 首先跑出1起点和n起点的最短路,因为k只有50,所以可以DP.设f[i][j]表示比最短路多走i的长度,到j的方案数. 我们发现如果在最短路上的和零边会有后向性, ...
- 洛谷 3953 NOIP2017提高组Day1 T3 逛公园
[题解] 先建反向图,用dijkstra跑出每个点到n的最短距离dis[i] 设f[u][k]表示dis(u,n)<=mindis(u,n)+k的方案数.对于边e(u,v,w),走了这条边的话需 ...
- 【NOIP2017 D1T3】逛公园
NOIP2017 D1T3 逛公园 题意:给一个有向图,每条边有权值,问从\(1\)到\(N\)的长度不超过最短路长度\(+K\)的路径条数.如果有无数条则输出\(-1\). 思路:我们首先扔掉\(- ...
- [NOIp2017提高组]逛公园
题目大意: 给你一个有向图,若用dis(u,v)表示从u到v的最短路长度,求从1到n的长度不超过dis(1,n)+k的路径数. 思路: 首先分别预处理出以1,n为起点的单.源最短路. 对于合法的边重构 ...
- [NOIP2017 提高组] 逛公园
考虑先做一个\(dp\),考虑正反建图,然后按0边拓扑,然后按1到这里的最小距离排序,然后扩展这个\(f_{i,j}\),即多了\(j\)的代价的方案数.
- Luogu P3953 逛公园(最短路+记忆化搜索)
P3953 逛公园 题面 题目描述 策策同学特别喜欢逛公园.公园可以看成一张 \(N\) 个点 \(M\) 条边构成的有向图,且没有自环和重边.其中 \(1\) 号点是公园的入口,\(N\) 号点是公 ...
- 逛公园[NOIP2017 D2 T3](dp+spfa)
题目描述 策策同学特别喜欢逛公园. 公园可以看成一张 \(N\)个点\(M\) 条边构成的有向图,且没有自环和重边.其中 1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值,代表策策经过这条 ...
- 逛公园「NOIP2017」最短路+DP
大家好我叫蒟蒻,这是我的第一篇信竞题解blog [题目描述] 策策同学特别喜欢逛公园. 公园可以看成一张 \(N\) 个点 \(M\) 条边构成的有向图,且没有自环和重边.其中 \(1\) 号点是公园 ...
- 【题解】NOIP2017逛公园(DP)
[题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n节点的最短路径,\(dp(i,k)\)表示从\(i\)节点 ...
随机推荐
- vue新增属性是否会响应式更新?
原文地址 在开发过程中,我们时常会遇到这样一种情况:当vue的data里边声明或者已经赋值过的对象或者数组(数组里边的值是对象)时,向对象中添加新的属性,如果更新此属性的值,是不会更新视图的. 根据官 ...
- AP注册
1.ac发现ap 两种模式:二层发现.三层发现 按ap与ac所处ip网段不同,可以把注册过程分为二层模式和三层模式: 两种模式均通过发送discovery报文进行,二层模式discovery报文仅在同 ...
- python-Web-django-商城-不登陆添加购物车
utils: # 商品多级联动 def get_category(categorys)->dict: ''' :param:商品类性 :return: {{[],[]},{[],[]},{[], ...
- 3分钟Markdown快速入门与使用
Markdown是一种可以使用普通文本编辑器编写的标记语言,通过简单的标记语法,它可以使普通文本内容具有一定的格式. 注意:图片为效果图 1 标题 #开头代表标题,几个#号代表几级,最高支持六级标题 ...
- c++ static_cast和dynamic_cast详解
注:从图中可以看出,派生类不仅有自己的方法和属性,同时它还包括从父类继承来的方法和属性.当我们从派生类向基类转换时,不管用传统的c语言还是c++转换方式都可以百分百转换成功.但是可怕是向下转换类型,也 ...
- PYTHON 100days学习笔记005:总结和练习
目录 day005:总结和练习 1.寻找水仙花数 2.寻找"完美数" 3."百鸡百钱"问题 4.生成"斐波那契数列" 5.Craps赌博游戏 ...
- 基于licode搭建webrtc服务器
0. 前言 licode官网文档安装教程十分简单, 但是实际搭建过程是很艰辛的. 官方文档没有提示说会遇到什么样的问题, 实际过程中可能遇到各种各样的问题, 在解决的时候费时费力, 我就总结一下自己在 ...
- c++ erase 中的坑
先看一段正常的代码 #include <iostream> #include <string> using namespace std; int main() { " ...
- Linux就该这么学——新手必须掌握的命令之文件编辑命令组
cat 命令 用途 : 用于查看纯文本文件 格式 : cat [选项] [文件] 示例 : more 命令 用途 : 用于查看纯文本文件(内容较多的),可以用”Enter” 键或者”Space”键向下 ...
- 关于KMP中求next数组的思考【转】
文章转自 http://www.tuicool.com/articles/yayeIbe.这是我看到关于求next数组,解释最好的一篇文章!!!!!!! KMP的next数组求法是很不容易搞清楚的一部 ...