NOIP2017 Day1 T3

更好的阅读体验

题目描述

策策同学特别喜欢逛公园。公园可以看成一张\(N\)个点\(M\)条边构成的有向图,且没有 自环和重边。其中1号点是公园的入口,\(N\)号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间。

策策每天都会去逛公园,他总是从1号点进去,从\(N\)号点出来。

策策喜欢新鲜的事物,它不希望有两天逛公园的路线完全一样,同时策策还是一个 特别热爱学习的好孩子,它不希望每天在逛公园这件事上花费太多的时间。如果1号点 到\(N\)号点的最短路长为\(d\),那么策策只会喜欢长度不超过\(d + K\)的路线。

策策同学想知道总共有多少条满足条件的路线,你能帮帮它吗?

为避免输出过大,答案对\(P\)取模。

如果有无穷多条合法的路线,请输出\(-1\)。

输入输出格式

输入格式:

第一行包含一个整数 \(T\), 代表数据组数。

接下来\(T\)组数据,对于每组数据: 第一行包含四个整数 \(N,M,K,P\),每两个整数之间用一个空格隔开。

接下来\(M\)行,每行三个整数\(a_i,b_i,c_i\),代表编号为\(a_i,b_i\)的点之间有一条权值为 \(c_i\)的有向边,每两个整数之间用一个空格隔开。

输出格式:

输出文件包含 \(T\) 行,每行一个整数代表答案。

输入输出样例
输入样例#1:
2
5 7 2 10
1 2 1
2 4 0
4 5 2
2 3 2
3 4 1
3 5 2
1 5 3
2 2 0 10
1 2 0
2 1 0
输出样例#1:
3
-1
说明
样例解释1

对于第一组数据,最短路为 \(3\)。 \(1 – 5, 1 – 2 – 4 – 5, 1 – 2 – 3 – 5\) 为 \(3\) 条合法路径。

测试数据与约定

对于不同的测试点,我们约定各种参数的规模不会超过如下

测试点编号 \(T\) \(N\) \(M\) \(K\) 是否有0边
1 5 5 10 0
2 5 1000 2000 0
3 5 1000 2000 50
4 5 1000 2000 50
5 5 1000 2000 50
6 5 1000 2000 50
7 5 100000 200000 0
8 3 100000 200000 50
9 3 100000 200000 50
10 3 100000 200000 50

对于 100%的数据, \(1 \le P \le 10^9,1 \le a_i,b_i \le N ,0 \le c_i \le 1000\)。

数据保证:至少存在一条合法的路线。


解题报告

题意理解

这道题目题意就是让你,统计一下长度为\([d,d+k]\)这个区间内从\(1->n\)的路径总数.

30pts

暴力统计

我们发现这道题目有三个点,也即是数据点1,2,7这三个点都是只需要我们找最短路的路径个数.

既然如此的话,我们不妨在最短路算法中,再开一个额外的数组统计路径个数,去拿到这三十分.

1.如果发现松弛操作的两种路径相等,也就是a->c=a->b+b->c,那么我们就将搜索到的点的路径数加上当前点的路径数,即:

    if(dis[i]==dis[k]+ver[k][i])
cnt[i]+=cnt[k];

2.如果我们更新了搜索到的点到起点的最短距离,也就是a->c < a->b+b->c ,那么我们将到达改点的路径数改为当前点的路径数,也就是

    if(dis[i]>dis[k]+ver[k][i]){
dis[i]=dis[k]+ver[k][i];
cnt[i]=cnt[k];
}

70pts

暴力思想

我们其实可以惊奇地发现,就是我们的\(k \le 50\),这说明什么就是我们完全可以暴力地去统计,长度为\(d,d+1,d+2,d+3,...,d+K\)的所有路径.

综上所述我们可以通过搜索算法,去一步步暴力地搜索,找到符合条件的路径.

但是我们发现这个搜索显然复杂度太高了.

各大剪枝

我们对于当前这一步而言,如果说它花费了\(w\)点代价,然后接下来我们统统都以最优秀的最短路走到终点,花费\(s\)点费用.

然后我们惊奇地发现\(w+s>d+k\),那么显然这一步是不合法的,因为它的最小花费代价都大于了我们的最大上限路径长度.

综上所述,第一个剪枝,就是我们的可行性剪枝.

但是我们如何统计一个点到终点的距离呢?难道我们要每一次都跑一遍最短路算法统计吗

其实我们可以通过建立一个反向图,来达到目的地.

  1. 什么是反向图?

我们以样例为例子.

这张图叫做原图.

这张图就是我们的反向图.

所谓的反向图就是将方向统统反过来,原来是a->b,现在改成b->a

  1. 反向图有什么用处

我们发现反向图最大的用处,就是统计一个点到终点的距离.

因为此时我们的起点是原来的终点N,而现在的终点变成了原来的起点1.所以我们最短路过后,每一个\(dis[i]\)表示为节点\(N\)到\(i\)的距离.

综上所述,我们就这么巧妙地处理了第一个可行性剪枝.


但是我们现在依旧发现了一个问题,我们的时间复杂度还是太高了,所以我们不得不进行记忆化剪枝,也就是利用了了动态规划的思想.

首先我们观察一下,路径长度为\(d+1,d+2,d+3,d+4,...,d+K\)的路径,他们具有以下特征.

  1. 对于长度为\(d+1\)的路径而言,我们可以认为它是最短路情况下,多走了一点冤枉路.

  2. 对于长度为\(d+2\)的路径而言,我们可以认为它是最短路情况下,多走了二点冤枉路.

  3. 对于长度为\(d+3\)的路径而言,我们可以认为它是最短路情况下,多走了三点冤枉路.

将以上路径转化后,我们发现完全可以通过动态规划的思想去处理本问题.

我们设\(f[i][j]\)表示为,当前到达了点\(i\),已经多走了冤枉路\(j\).

那么我们发现状态转移方程也迎刃而解了.

\[f[u][w]=∑f[v][w+dis[u]−(dis[v]+ver[u][v])] \\
0 \le w \le K \\
(u,v)为一条边 \\
ver[u][v]表示u到v的距离.\\
w表示当前走了w点冤枉路
\]

我们解释一下上面的状态转移方程的核心点.

\[w+dis[u]-(dis[v]+ver[u][v]);
\]

对于下面这个式子而言,它表示为从起点走到\(v\)所需要花费的最少长度.

\[dis[v]
\]

那么我们的一条最短路径,且是从\(u\)走到\(v\)所花费长度为.

\[dis[v]+ver[u][v]
\]

然后我们的从起点走到\(u\)所花费的最短长度显然为.

\[dis[u]
\]

既然如此那么我们从起点走到\(v**\)的最短路径,减去,我们从起点走到\(u\)然后再走到\(v\)的最短路径,就是我们的多走冤枉路.**

\[dis[u]-(dis[v]+ver[u][v]);
\]

综上所述,这就是我们的思路,那么最后的答案,显然就是.

\[Ans=\sum_{i=0}^{K}{f[n][i]}
\]


100pts

经历了千辛万苦的你,发现如果按照楼上的思路写代码的话,你发现居然只有70pts.

那是因为你忽略掉了-1这种无解的情况.

而-1这个点,其实就是题目中出现了长度为0的一个环 简称0环.

如何判断呢?

  1. 拓扑排序判断
  2. Tarjan算法判断
  3. 搜索的过程中,如果一个点两次进入我们的最短路,那么显然就是0环.

显然这道题目我们使用第三个算法判断.


代码解释

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;//数据范围
const int inf=1e9;//最大值
int t,n,m,k,p,ans,flag,vis[N],dis[N],dp[N][55],vis_dp[N][55],x,y,z;//变量
struct node//最近get到的结构体内置,好好玩啊.模板标记
{
int cnt,edge[N<<1],ver[N<<1],Next[N<<1],head[N];//记得边要乘以2,因为要建立反向图
void init()//初始化
{
cnt=0;
memset(head,0,sizeof(head));
}
void add_edge(int x,int y,int z)//建图
{
edge[++cnt]=y;
ver[cnt]=z;
Next[cnt]=head[x];
head[x]=cnt;
}
void spfa(int s)//SPFA,NOIP是不会卡掉我们的.
{
int i,x;
queue<int>q;
for(i=1; i<=n; i++)
{
vis[i]=0;
dis[i]=inf;
}
q.push(s),vis[s]=1,dis[s]=0;
while(q.size())
{
x=q.front();
q.pop();
vis[x]=0;//出来了
for(i=head[x]; i; i=Next[i])//遍历所有的出边
{
int y=edge[i],z=ver[i];
if(dis[x]+z<dis[y])
{
dis[y]=dis[x]+z;//更新
if(vis[y]==0)
{
q.push(y);
vis[y]=1;//标记
}
}
}
}
}
} g1,g2;
void clear()
{
ans=0;
flag=1;
g1.init();//初始化很重要
g2.init();
memset(dp,-1,sizeof(dp));
}
int dfs(int x,int k)
{
int i,j;
if(~dp[x][k])//记忆化搜索
return dp[x][k];
vis_dp[x][k]=1;//标记进入了最短路径
dp[x][k]=0;
for(i=g2.head[x]; i; i=g2.Next[i])
{
int y=g2.edge[i],z=k+dis[x]-(dis[y]+g2.ver[i]);
if(z>=0)//如果是在指定偏差区间内的
{
if(vis_dp[y][z])//之前已经进入过最短路径了,那么显然是无解了.
flag=0;
dp[x][k]+=dfs(y,z);//统计
dp[x][k]%=p;//取得取模
}
}
vis_dp[x][k]=0;//已经从最短路径中出来了.
return dp[x][k];//该返回了
}
int main()
{
scanf("%d",&t);
while(t--)
{
clear();
scanf("%d%d%d%d",&n,&m,&k,&p);
for(int i=1; i<=m; i++)
{
scanf("%d%d%d",&x,&y,&z);
g1.add_edge(x,y,z);
g2.add_edge(y,x,z);//不是无向边,是建立反向图
}
g1.spfa(1);
dp[1][0]=1;
for(int i=0; i<=k; i++)
{
ans+=dfs(n,i);//每一个有冤枉路的路径都要加入
ans%=p;//取模快乐
}
dfs(n,k+1);//再来一下判断
if(!flag)//无解了
puts("-1");
else
printf("%lld\n",ans);
}
return 0;
}

NOIP2017 Day1 T3 逛公园的更多相关文章

  1. NOIP2017 Day1 T3 逛公园(最短路+拓扑排序+DP)

    神tm比赛时多清个零就有60了T T 首先跑出1起点和n起点的最短路,因为k只有50,所以可以DP.设f[i][j]表示比最短路多走i的长度,到j的方案数. 我们发现如果在最短路上的和零边会有后向性, ...

  2. 洛谷 3953 NOIP2017提高组Day1 T3 逛公园

    [题解] 先建反向图,用dijkstra跑出每个点到n的最短距离dis[i] 设f[u][k]表示dis(u,n)<=mindis(u,n)+k的方案数.对于边e(u,v,w),走了这条边的话需 ...

  3. 【NOIP2017 D1T3】逛公园

    NOIP2017 D1T3 逛公园 题意:给一个有向图,每条边有权值,问从\(1\)到\(N\)的长度不超过最短路长度\(+K\)的路径条数.如果有无数条则输出\(-1\). 思路:我们首先扔掉\(- ...

  4. [NOIp2017提高组]逛公园

    题目大意: 给你一个有向图,若用dis(u,v)表示从u到v的最短路长度,求从1到n的长度不超过dis(1,n)+k的路径数. 思路: 首先分别预处理出以1,n为起点的单.源最短路. 对于合法的边重构 ...

  5. [NOIP2017 提高组] 逛公园

    考虑先做一个\(dp\),考虑正反建图,然后按0边拓扑,然后按1到这里的最小距离排序,然后扩展这个\(f_{i,j}\),即多了\(j\)的代价的方案数.

  6. Luogu P3953 逛公园(最短路+记忆化搜索)

    P3953 逛公园 题面 题目描述 策策同学特别喜欢逛公园.公园可以看成一张 \(N\) 个点 \(M\) 条边构成的有向图,且没有自环和重边.其中 \(1\) 号点是公园的入口,\(N\) 号点是公 ...

  7. 逛公园[NOIP2017 D2 T3](dp+spfa)

    题目描述 策策同学特别喜欢逛公园. 公园可以看成一张 \(N\)个点\(M\) 条边构成的有向图,且没有自环和重边.其中 1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值,代表策策经过这条 ...

  8. 逛公园「NOIP2017」最短路+DP

    大家好我叫蒟蒻,这是我的第一篇信竞题解blog [题目描述] 策策同学特别喜欢逛公园. 公园可以看成一张 \(N\) 个点 \(M\) 条边构成的有向图,且没有自环和重边.其中 \(1\) 号点是公园 ...

  9. 【题解】NOIP2017逛公园(DP)

    [题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n​节点的最短路径,\(dp(i,k)\)表示从\(i\)节点 ...

随机推荐

  1. 第四章 信息收集之nmap

    @nmap扫描工具 nmap是使用最广泛的扫描工具,主要的使用范围有,嗅探,扫描,ping. 局域网扫描 nmap扫描的基本命令: 首先在桌面右键选择open in terminal进入命令窗口,输入 ...

  2. LeetCode.1217-交换芯片(Play with Chips)

    这是小川的第次更新,第篇原创 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第270题(顺位题号是1217).There are some chips, and the i-th ch ...

  3. 【无线安全实践入门】破解WiFi密码的多个方法

    本文希望可以帮助到想要学习接触此方面.或兴趣使然的你,让你有个大概的印象. 文中可能存在错误操作或错误理解,望大家不吝指正. !阅前须知! 本文是基于我几年前的一本笔记本,上面记录了我学习网络基础时的 ...

  4. 【VS开发】VC++ 获取系统时间、程序运行时间(精确到秒,毫秒)的五种方法

    1.使用CTime类(获取系统当前时间,精确到秒) CString str; //获取系统时间 CTime tm; tm=CTime::GetCurrentTime();//获取系统日期 str=tm ...

  5. windows 3种方式运行exe文件

    1.双击文件运行 2.打开cmd,cd 到要运行的文件目录下,输入文件名或者文件名.exe 3.将文件目录配置到系统环境变量,按windws+R输入文件名或者文件名.exe

  6. Reactor系列(一)基本概念

    基本概念 视频讲解:https://www.bilibili.com/video/av78731069/ 关注公众号,坚持每天3分钟视频学习

  7. layui-dTree显示不出来且前台报错

    layui-dTree显示不出来且前台报错 Cannot read property 'parents' of null 检查过后发现layer并没有使用到,找不到任何办法解决. 最后删除了respo ...

  8. 使用python连接mysql数据库——pymysql模块的使用

    安装pymysql pip install pymysql 使用pymysql 使用数据查询语句 查询一条数据fetchone() from pymysql import * conn = conne ...

  9. springMvc改造springboot2.0踩坑

    1. 支持jsp applicaiton.proerties添加配置 #指定视图解析路径前缀 spring.mvc.view.prefix=/WEB-INF/jsp/ #指定视图解析后缀 spring ...

  10. mysql 8.x 登陆提示 Access denied for user 'root'@'localhost' (using password: YES)

    第一步:修改 /etc/mysql/my.cnf. 在[mysql]下添加skip-grant-table:重启. 第二步:通过mysql命令登陆: flush privileges; use mys ...