title: 【线性代数】6-6:相似矩阵(Similar Matrices)

categories:

  • Mathematic
  • Linear Algebra

    keywords:
  • Similar Matrices
  • Jordan Form
  • Eigenvalues
  • Eigenvectors

    toc: true

    date: 2017-11-29 09:08:12

Abstract: 本文主要介绍根据矩阵对角化以及特征值引出的相似矩阵的性质和特点

Keywords: Similar Matrices,Jordan Form,Eigenvalues,Eigenvectors

开篇废话

一篇一度的废话开始了,谎言和真想到底有什么区别?其实没什么区别,如果你相信谎言不去怀疑,那么你就可以生活在谎言所构造的世界中,或者你想探索真理,那么你就要接受一个有一个残酷的现实,就是你一直被欺骗,而且很多东西已经形成的错误的习惯,那么这个可能很难纠正,两个世界都能承载人的一生,红药丸,蓝药丸,你可以自己选择,对于什么监控坏了,官方辟谣,这些话可能是真的,也可能是假的,所以可以信也可以不信,至于信与不信不过是吃完饭后的谈资而已。

特征值特征向量这一章是线性代数的高潮部分,可以说是高潮迭起,这部分相比四个子空间部分可能逻辑性更强一点,需要前后联通,只看一部分肯定要掉坑,所以这几篇写的都非常多,今天的相似矩阵是对角化引出的另一个重要分支,但是篇幅不大。

在研究这一章的时候总感觉Prof. Strang写的很细致,可以很容易的帮你知道什么是什么但是如果想了解点深入的背后的东西,由于篇幅限制(可以看出老先生有意的控制篇幅,并没有长的长的短的短,所有章节长度基本相同)没有深入讨论,也可能线性代数的introduction仅限于这些,更深入的话可能就是另一门课了,所以后续可能出个矩阵论或者矩阵分析类的系列博客。

Similar Matrices

Similar相似,但又不同,如果说某两件事物相似,那么必然有相似点,也就是这两件事物的某一属性,或者某几个属性一致,那么如果说两个矩阵相似,有可能是形状,比如上三角矩阵,对角矩阵,这些矩阵都有相同的属性,我们这里定义矩阵相似–拥有相同的特征值。

本章我们研究的主要内容是矩阵的对角化,对角化的前提是有足够的特征向量,也就是说如果某个矩阵特征向量不足,那么就没办法产生特征向量矩阵SSS 那么我们就不研究他们了,

【线性代数】6-6:相似矩阵(Similar Matrices)的更多相关文章

  1. 【线性代数】6-4:对称矩阵(Symmetric Matrices)

    title: [线性代数]6-4:对称矩阵(Symmetric Matrices) categories: Mathematic Linear Algebra keywords: Eigenvalue ...

  2. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  3. 【Math for ML】矩阵分解(Matrix Decompositions) (上)

    I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\ ...

  4. AI数学基础之:奇异值和奇异值分解

    目录 简介 相似矩阵 对角矩阵 可对角化矩阵 特征值 特征分解 特征值的几何意义 奇异值 Singular value 奇异值分解SVD 简介 奇异值是矩阵中的一个非常重要的概念,一般是通过奇异值分解 ...

  5. 【线性代数】6-5:正定矩阵(Positive Definite Matrices)

    title: [线性代数]6-5:正定矩阵(Positive Definite Matrices) categories: Mathematic Linear Algebra keywords: Po ...

  6. 线性代数 | Linear Algebra

    网上说<线性代数应该这样学>非常不错,再配合大学教材,把线性代数的基本知识点过一遍. 线性代数 - 知乎 最近在跟一个教程:李宏毅的线性代数 基本知识: Rn :We denote the ...

  7. 应用线性代数简介 - 向量,矩阵和最小二乘法 By Stephen Boyd and Lieven Vandenberghe

    Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares 应用线性代数简介 - 向量,矩阵和最小二乘法 ...

  8. [线性代数] 线性子空间入門 Basic Vector Subspaces

    导语:其他集数可在[线性代数]标籤文章找到.线性子空间是一个大课题,这里先提供一个简单的入门,承接先前关于矩阵代数的讨论,期待与你的交流. Overview: Subspace definition ...

  9. [线性代数] 矩阵代数進階:矩阵分解 Matrix factorization

    Matrix factorization 导语:承载上集的矩阵代数入门,今天来聊聊进阶版,矩阵分解.其他集数可在[线性代数]标籤文章找到.有空再弄目录什麽的. Matrix factorization ...

随机推荐

  1. C#委托和事件的使用示例

    一.委托 使用委托时要先实例化,和类一样,使用new关键字产生委托的新实例,然后将一个或者多个与委托签名匹配的方法与委托实例关联.随后调用委托时,就会调用所有与委托实例关联的方法. 与委托关联可以是任 ...

  2. (四)Hibernate的增删改查操作(1)

    Hiberntae的查找操作有多种: 1.  使用Criteria接口查询 Query_Criteria.java package action; import java.util.ArrayList ...

  3. 十三、Vue中的computed属性

    以下抄自https://www.cnblogs.com/gunelark/p/8492468.html 看了网上很多资料,对vue的computed讲解自己看的都不是很清晰,今天忙里抽闲,和同事们又闲 ...

  4. Python练习_装饰器、生成器_day12

    装饰器 装饰器篇: 1.编写装饰器,为多个函数加上认证的功能(用户的账号密码来源于文件),要求登录成功一次,后续的函数都无需再输入用户名和密码. def login(func): def inner( ...

  5. VBA if...else语句

    一个if语句由一个布尔表达式和一个或多个语句组成.如果条件评估为True,则执行if条件下的语句.如果条件评估为False,则执行else部分块下的语句. 语法 以下是VBScript中的if els ...

  6. 【导出导入】IMPDP table_exists_action 参数的应用

    转自:https://yq.aliyun.com/articles/29337 当使用IMPDP完成数据库导入时,如遇到表已存在时,Oracle提供给我们如下四种处理方式:a.忽略(SKIP,默认行为 ...

  7. 使用了frame的页面如何整体进行跳转,而不是仅frame跳转

    使用了frame的页面如何整体进行跳转,而不是仅frame跳转 js window.parent.location.href="你的地址"; php echo "&quo ...

  8. Computer Vision_33_SIFT:Improving Bag-of-Features for Large Scale Image Search——2010

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. Scyther 形式化分析工具资料整理(三)

    1.作者Cas Cremers在做TLS1.3的时候我么发现并没有使用Scyther 形式化丰分析工具对其进行分析,而是使用了 The Tamarin .作者建立了TLS.13的模型. 那么我的目标是 ...

  10. 02 WIndows编程——危险的sizeof

    C语言中,对 sizeof() 的处理都是在编译阶段进行. 下面代码,注意可变参数是怎么使用的 #include<Windows.h> #include<stdio.h> in ...