阻塞I/O、非阻塞I/O和I/O多路复用、怎样理解阻塞非阻塞与同步异步的区别?
“阻塞”与"非阻塞"与"同步"与“异步"不能简单的从字面理解,提供一个从分布式系统角度的回答。
1.同步与异步
同步和异步关注的是消息通信机制 (synchronous communication/ asynchronous communication)
所谓同步,就是在发出一个*调用*时,在没有得到结果之前,该*调用*就不返回。但是一旦调用返回,就得到返回值了。
换句话说,就是由*调用者*主动等待这个*调用*的结果。
而异步则是相反,*调用*在发出之后,这个调用就直接返回了,所以没有返回结果。换句话说,当一个异步过程调用发出后,调用者不会立刻得到结果。而是在*调用*发出后,*被调用者*通过状态、通知来通知调用者,或通过回调函数处理这个调用。
典型的异步编程模型比如Node.js
举个通俗的例子:
你打电话问书店老板有没有《分布式系统》这本书,如果是同步通信机制,书店老板会说,你稍等,”我查一下",然后开始查啊查,等查好了(可能是5秒,也可能是一天)告诉你结果(返回结果)。
而异步通信机制,书店老板直接告诉你我查一下啊,查好了打电话给你,然后直接挂电话了(不返回结果)。然后查好了,他会主动打电话给你。在这里老板通过“回电”这种方式来回调。
2. 阻塞与非阻塞
阻塞和非阻塞关注的是程序在等待调用结果(消息,返回值)时的状态.
阻塞调用是指调用结果返回之前,当前线程会被挂起。调用线程只有在得到结果之后才会返回。
非阻塞调用指在不能立刻得到结果之前,该调用不会阻塞当前线程。
还是上面的例子,
你打电话问书店老板有没有《分布式系统》这本书,你如果是阻塞式调用,你会一直把自己“挂起”,直到得到这本书有没有的结果,如果是非阻塞式调用,你不管老板有没有告诉你,你自己先一边去玩了, 当然你也要偶尔过几分钟check一下老板有没有返回结果。
在这里阻塞与非阻塞与是否同步异步无关。跟老板通过什么方式回答你结果无关。
阻塞与非阻塞指的的是当不能进行读写(网卡满时的写/网卡空的时候的读)的时候,I/O操作立即返回还是阻塞;
同步异步指的是,当数据已经ready的时候,读写操作是同步读还是异步读,阶段不同而已。
阻塞I/O、非阻塞I/O和I/O多路复用
一、阻塞I/O
首先,要从你常用的IO操作谈起,比如read和write,通常IO操作都是阻塞I/O的,也就是说当你调用read时,如果没有数据收到,那么线程或者进程就会被挂起,直到收到数据。阻塞的意思,就是一直等着。阻塞I/O就是等着数据过来,进行读写操作。应用的函数进行调用,但是内核一直没有返回,就一直等着。应用的函数长时间处于等待结果的状态,我们就称为阻塞I/O。每个应用都得等着,每个应用都在等着,浪费啊!很像现实中的情况。大家都不干活,等着数据过来,过来工作一下,没有的话继续等着。
二、非阻塞I/O
三、I/O多路复用
Redis,Nginx,Netty为什么这么香?
Redis,Nginx,Netty,Node.js 为什么这么香?这些技术都是伴随 Linux 内核迭代中提供了高效处理网络请求的系统调用而出现的。今天我们从操作系统层面理解 Linux 下的网络 IO 模型!
I/O( INPUT/OUTPUT),包括文件 I/O、网络 I/O。计算机世界里的速度鄙视:
内存读数据:纳秒级别。
千兆网卡读数据:微妙级别。1 微秒= 1000 纳秒,网卡比内存慢了千倍。
磁盘读数据:毫秒级别。1 毫秒=10 万纳秒 ,硬盘比内存慢了 10 万倍。
CPU 一个时钟周期 1 纳秒上下,内存算是比较接近 CPU 的,其他都等不起。
CPU 处理数据的速度远大于 I/O 准备数据的速度 。任何编程语言都会遇到这种 CPU 处理速度和 I/O 速度不匹配的问题!
在网络编程中如何进行网络 I/O 优化?怎么高效地利用 CPU 进行网络数据处理?
相关概念
从操作系统层面怎么理解网络 I/O 呢?计算机的世界有一套自己定义的概念。
如果不明白这些概念,就无法真正明白技术的设计思路和本质。所以在我看来,这些概念是了解技术和计算机世界的基础。
同步与异步,阻塞与非阻塞
理解网络 I/O 避不开的话题:同步与异步,阻塞与非阻塞。
拿山治烧水举例来说,(山治的行为好比用户程序,烧水好比内核提供的系统调用),这两组概念翻译成大白话可以这么理解:
同步/异步关注的是水烧开之后需不需要我来处理。
阻塞/非阻塞关注的是在水烧开的这段时间是不是干了其他事。
同步阻塞:点火后,傻等,不等到水开坚决不干任何事(阻塞),水开了关火(同步)。
同步非阻塞:点火后,去看电视(非阻塞),时不时看水开了没有,水开后关火(同步)。
异步阻塞:按下开关后,傻等水开(阻塞),水开后自动断电(异步)。
网络编程中不存在的模型。
异步非阻塞:按下开关后,该干嘛干嘛 (非阻塞),水开后自动断电(异步)。
内核空间 、用户空间
内核空间 、用户空间如上图:
内核负责网络和文件数据的读写。
- 用户程序通过系统调用获得网络和文件的数据。
内核态、用户态如上图:
程序为读写数据不得不发生系统调用。
通过系统调用接口,线程从用户态切换到内核态,内核读写数据后,再切换回来。
- 进程或线程的不同空间状态。
线程的切换如上图,用户态和内核态的切换耗时,费资源(内存、CPU)。
优化建议:
更少的切换。
共享空间。
套接字:Socket
套接字作用如下:
有了套接字,才可以进行网络编程。
应用程序通过系统调用 socket(),建立连接,接收和发送数据(I/O)。
Socket 支持了非阻塞,应用程序才能非阻塞调用,支持了异步,应用程序才能异步调用。
文件描述符:FD 句柄
网络编程都需要知道 FD???FD 是个什么鬼???Linux:万物都是文件,FD 就是文件的引用。
像不像 Java 中万物都是对象?程序中操作的是对象的引用。Java 中创建对象的个数有内存的限制,同样 FD 的个数也是有限制的。
Linux 在处理文件和网络连接时,都需要打开和关闭 FD。
每个进程都会有默认的 FD:
0 标准输入 stdin
1 标准输出 stdout
2 错误输出 stderr
服务端处理网络请求的过程
服务端处理网络请求的过程如上图:
连接建立后。
等待数据准备好(CPU 闲置)。
将数据从内核拷贝到进程中(CPU 闲置)。
怎么优化呢?对于一次 I/O 访问(以 read 举例),数据会先被拷贝到操作系统内核的缓冲区,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。
所以说,当一个 read 操作发生时,它会经历两个阶段:
等待数据准备 (Waiting for the data to be ready)。
将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)。
正是因为这两个阶段,Linux 系统升级迭代中出现了下面三种网络模式的解决方案。
I/O 模型
阻塞 I/O:Blocking I/O
简介:最原始的网络 I/O 模型。进程会一直阻塞,直到数据拷贝完成。
缺点:高并发时,服务端与客户端对等连接。
线程多带来的问题:
CPU 资源浪费,上下文切换。
- 内存成本几何上升,JVM 一个线程的成本约 1MB。
public static void main(String[] args) throws IOException {
ServerSocket ss = new ServerSocket();
ss.bind(new InetSocketAddress(Constant.HOST, Constant.PORT));
int idx =0;
while (true) {
final Socket socket = ss.accept();//阻塞方法
new Thread(() -> {
handle(socket);
},"线程["+idx+"]" ).start();
}
} static void handle(Socket socket) {
byte[] bytes = new byte[1024];
try {
String serverMsg = " server sss[ 线程:"+ Thread.currentThread().getName() +"]";
socket.getOutputStream().write(serverMsg.getBytes());//阻塞方法
socket.getOutputStream().flush();
} catch (Exception e) {
e.printStackTrace();
}
}
非阻塞 I/O:Non Blocking IO
简介:进程反复系统调用,并马上返回结果。
缺点:当进程有 1000fds,代表用户进程轮询发生系统调用 1000 次 kernel,来回的用户态和内核态的切换,成本几何上升。
public static void main(String[] args) throws IOException {
ServerSocketChannel ss = ServerSocketChannel.open();
ss.bind(new InetSocketAddress(Constant.HOST, Constant.PORT));
System.out.println(" NIO server started ... ");
ss.configureBlocking(false);
int idx =0;
while (true) {
final SocketChannel socket = ss.accept();//阻塞方法
new Thread(() -> {
handle(socket);
},"线程["+idx+"]" ).start();
}
}
static void handle(SocketChannel socket) {
try {
socket.configureBlocking(false);
ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
socket.read(byteBuffer);
byteBuffer.flip();
System.out.println("请求:" + new String(byteBuffer.array()));
String resp = "服务器响应";
byteBuffer.get(resp.getBytes());
socket.write(byteBuffer);
} catch (IOException e) {
e.printStackTrace();
}
}
I/O 多路复用:IO multiplexing
简介:单个线程就可以同时处理多个网络连接。内核负责轮询所有 Socket,当某个 Socket 有数据到达了,就通知用户进程。
多路复用在 Linux 内核代码迭代过程中依次支持了三种调用,即 Select、Poll、Epoll 三种多路复用的网络 I/O 模型。下文将画图结合 Java 代码解释。
①I/O 多路复用:Select
简介:有连接请求抵达了再检查处理。
缺点如下:
句柄上限:默认打开的 FD 有限制,1024 个。
重复初始化:每次调用 select(),需要把 FD 集合从用户态拷贝到内核态,内核进行遍历。
逐个排查所有 FD 状态效率不高。
服务端的 Select 就像一块布满插口的插排,Client 端的连接连上其中一个插口,建立了一个通道,然后再在通道依次注册读写事件。
一个就绪、读或写事件处理时一定记得删除,要不下次还能处理。
public static void main(String[] args) throws IOException {
ServerSocketChannel ssc = ServerSocketChannel.open();//管道型ServerSocket
ssc.socket().bind(new InetSocketAddress(Constant.HOST, Constant.PORT));
ssc.configureBlocking(false);//设置非阻塞
System.out.println(" NIO single server started, listening on :" + ssc.getLocalAddress());
Selector selector = Selector.open();
ssc.register(selector, SelectionKey.OP_ACCEPT);//在建立好的管道上,注册关心的事件 就绪
while(true) {
selector.select();
Set<SelectionKey> keys = selector.selectedKeys();
Iterator<SelectionKey> it = keys.iterator();
while(it.hasNext()) {
SelectionKey key = it.next();
it.remove();//处理的事件,必须删除
handle(key);
}
}
}
private static void handle(SelectionKey key) throws IOException {
if(key.isAcceptable()) {
ServerSocketChannel ssc = (ServerSocketChannel) key.channel();
SocketChannel sc = ssc.accept();
sc.configureBlocking(false);//设置非阻塞
sc.register(key.selector(), SelectionKey.OP_READ );//在建立好的管道上,注册关心的事件 可读
} else if (key.isReadable()) { //flip
SocketChannel sc = null;
sc = (SocketChannel)key.channel();
ByteBuffer buffer = ByteBuffer.allocate(512);
buffer.clear();
int len = sc.read(buffer);
if(len != -1) {
System.out.println("[" +Thread.currentThread().getName()+"] recv :"+ new String(buffer.array(), 0, len));
}
ByteBuffer bufferToWrite = ByteBuffer.wrap("HelloClient".getBytes());
sc.write(bufferToWrite);
}
}
②I/O 多路复用:Poll
简介:设计新的数据结构(链表)提供使用效率。
Poll 和 Select 相比在本质上变化不大,只是 Poll 没有了 Select 方式的最大文件描述符数量的限制。
缺点:逐个排查所有 FD 状态效率不高。
③I/O 多路复用:Epoll
简介:没有 FD 个数限制,用户态拷贝到内核态只需要一次,使用事件通知机制来触发。
通过 epoll_ctl 注册 FD,一旦 FD 就绪就会通过 Callback 回调机制来激活对应 FD,进行相关的 I/O 操作。
缺点如下:
跨平台,Linux 支持最好。
底层实现复杂。
- 同步。
public static void main(String[] args) throws Exception {
final AsynchronousServerSocketChannel serverChannel = AsynchronousServerSocketChannel.open()
.bind(new InetSocketAddress(Constant.HOST, Constant.PORT));
serverChannel.accept(null, new CompletionHandler<AsynchronousSocketChannel, Object>() {
@Override
public void completed(final AsynchronousSocketChannel client, Object attachment) {
serverChannel.accept(null, this);
ByteBuffer buffer = ByteBuffer.allocate(1024);
client.read(buffer, buffer, new CompletionHandler<Integer, ByteBuffer>() {
@Override
public void completed(Integer result, ByteBuffer attachment) {
attachment.flip();
client.write(ByteBuffer.wrap("HelloClient".getBytes()));//业务逻辑
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {
System.out.println(exc.getMessage());//失败处理
}
});
} @Override
public void failed(Throwable exc, Object attachment) {
exc.printStackTrace();//失败处理
}
});
while (true) {
//不while true main方法一瞬间结束
}
}
当然上面的缺点相比较它的优点都可以忽略。JDK 提供了异步方式实现,但在实际的 Linux 环境中底层还是 Epoll,只不过多了一层循环,不算真正的异步非阻塞。
而且就像上图中代码调用,处理网络连接的代码和业务代码解耦得不够好。
Netty 提供了简洁、解耦、结构清晰的 API。
public static void main(String[] args) {
new NettyServer().serverStart();
System.out.println("Netty server started !");
} public void serverStart() {
EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) throws Exception {
ch.pipeline().addLast(new Handler());
}
});
try {
ChannelFuture f = b.localAddress(Constant.HOST, Constant.PORT).bind().sync();
f.channel().closeFuture().sync();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
workerGroup.shutdownGracefully();
bossGroup.shutdownGracefully();
}
}
} class Handler extends ChannelInboundHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
ByteBuf buf = (ByteBuf) msg;
ctx.writeAndFlush(msg);
ctx.close();
} @Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
cause.printStackTrace();
ctx.close();
}
}
bossGroup 处理网络请求的大管家(们),网络连接就绪时,交给 workGroup 干活的工人(们)。
总结
回顾上文总结如下:
同步/异步,连接建立后,用户程序读写时,如果最终还是需要用户程序来调用系统 read() 来读数据,那就是同步的,反之是异步。Windows 实现了真正的异步,内核代码甚为复杂,但对用户程序来说是透明的。
阻塞/非阻塞,连接建立后,用户程序在等待可读可写时,是不是可以干别的事儿。如果可以就是非阻塞,反之阻塞。大多数操作系统都支持的。
Redis,Nginx,Netty,Node.js 为什么这么香?这些技术都是伴随 Linux 内核迭代中提供了高效处理网络请求的系统调用而出现的。
了解计算机底层的知识才能更深刻地理解 I/O,知其然,更要知其所以然。与君共勉!
相关文章:
阻塞I/O、非阻塞I/O和I/O多路复用、怎样理解阻塞非阻塞与同步异步的区别?的更多相关文章
- Netty基础系列(2) --彻底理解阻塞非阻塞与同步异步的区别
引言 在进行I/O学习的时候,阻塞和非阻塞,同步和异步这几个概念常常被提及,但是很多人对这几个概念一直很模糊.要想学好Netty,这几个概念必须要掌握清楚. 同步和异步 同步与异步的区别在于,异步基于 ...
- 网络I/O模型--03非阻塞模式(ServerSocket与Socket的超时处理)--解除accept()、 read()方法阻塞
对于阻塞方式的一种改进是在应用程序层面上将 “一直等待 ”的状态主动打开: 这种模式下,应用程序的线程不再一直等待操作系统的 I/O状态,而是在等待一段时间后就解除阻塞.如果没有得到想要的结果,则再次 ...
- 几种IO情况的学习和总结 关于 =====阻塞/非阻塞以及同步/异步区别
同步IO和异步IO,阻塞IO和非阻塞IO分别是什么,到底有什么区别?不同的人在不同的上下文下给出的答案是不同的.所以先限定一下本文的上下文. 背景是Linux环境下的network IO. 在进行解释 ...
- 【转载】java项目中经常碰到的内存溢出问题: java.lang.OutOfMemoryError: PermGen space, 堆内存和非堆内存,写的很好,理解很方便
Tomcat Xms Xmx PermSize MaxPermSize 区别 及 java.lang.OutOfMemoryError: PermGen space 解决 解决方案 在 catalin ...
- 【几何/数学】概念的理解 —— (非)刚体变换((non-)rigid transformation)
1. 刚体变换与非刚体变换 What is a non-rigid transformation? 刚体变换(rigid transformation)一般分为如下几种: 平移对象,而不改变形状和大小 ...
- ffmpeg中关于EAGAIN的理解及非阻塞IO
ffmpeg为在linux下开发的开源音视频框架,所以经常会碰到很多错误(设置errno),其中EAGAIN是其中比较常见的一个错误(比如用在非阻塞操作中). try again,从字面上来看,是提 ...
- String的非空判断、Integer的非空判断、list的大小判断,对象的非空判断
1.String的非空判断. StringUtils.isNotEmpty(String str); 2.Integer的非空判断. null != Integer ; 3.list的大小判断. li ...
- 深入理解js——非构造函数的继承
原文来自阮一峰日志(http://www.ruanyifeng.com/blog/2010/05/object-oriented_javascript_inheritance_continued.ht ...
- java多态的理解----部分非原创
所谓多态,其实就是对于同一件事情,不同的对象要采取不同的行为,或者同一个对象在不同的情况下需要采取不同的行为方式. 不同的对象要采取不同的行为: 这有两种实现方式:接口实现和子类重新父类方法.这两种实 ...
随机推荐
- Vue_(组件通讯)非父子关系组件通信
Vue单项数据流 传送门 Vue中不同的组件,即使不存在父子关系也可以相互通信,我们称为非父子关系通信 我们需要借助一个空Vue实例,在不同的组件中,使用相同的Vue实例来发送/监听事件,达到数据通信 ...
- vue 使用axios 出现跨域请求的两种解决方法
最近在使用vue axios发送请求,结果出现跨域问题,网上查了好多,发现有好几种结局方案. 1:服务器端设置跨域 header(“Access-Control-Allow-Origin:*”); h ...
- PHP依赖管理工具Composer入门
作者: JeremyWei | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明 网址: http://weizhifeng.net/manage-php-dependency-wi ...
- Java写入的常用技巧
一.批量写入 Java写入大量数据到磁盘/数据库等其它第三方介质时,由于IO是比较耗费资源的操作,通常采用攒一批然后批量写入的模式 //通常构造一个缓存池,一个限制指标,可以是内存大小也可以是时间 B ...
- 12.数值的整数次方 Java
题目描述 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方. 这道题看似简单,其实BUG重重.要注意的问题: 1 关于次幂的问题特殊的情况, ...
- 【黑马JavaSE】1_1_9_流程控制:顺序结构、判断结构、选择结构、循环结构
文章目录 1_1_9_01_ 流程控制概述 1_1_9_01_ 顺序结构 1_1_9_ 判断结构 1_1_9_02_ 判断语句1--if 1_1_9_03_ 判断语句2--if...else 1_1_ ...
- better-scroll 的介绍
配置项中的 probeType 属性,是number,当值为 0 ,不会实时监听 scroll 事件,设置为 2 - 3 ,可以实时监听 scroll 事件 pullUpload 选项,设置为 fal ...
- TensorFlow 学习(3)——MNIST机器学习入门
通过对MNIST的学习,对TensorFlow和机器学习快速上手. MNIST:手写数字识别数据集 MNIST数据集 60000行的训练数据集 和 10000行测试集 每张图片是一个28*28的像素图 ...
- MessageBox 弹框
模拟系统的消息提示框而实现的一套模态对话框组件,用于消息提示.确认消息和提交内容. 从场景上说,MessageBox 的作用是美化系统自带的 alert.confirm 和 prompt,因此适合展 ...
- 八十六:redis之RDB和AOF两种数据持久化机制
详见:http://redisdoc.com/persistence/index.html redis.conf RDB机制 改为5秒内1次 文件已生成 关闭RDB,注释掉3个save,重启redis ...