在信息论中,perplexity(困惑度)用来度量一个概率分布或概率模型预测样本的好坏程度。它也可以用来比较两个概率分布或概率模型。(应该是比较两者在预测样本上的优劣)低困惑度的概率分布模型或概率模型能更好地预测样本。

困惑度越小,句子概率越大,语言模型越好。

wiki上列举了三种perplexity的计算:

1. 概率分布的perplexity

公式:

离散概率分布p的困惑度由下式给出 其中H(p) 是该分布的熵,x遍历事件空间。

随机变量X的复杂度由其所有可能的取值x定义。 一个特殊的例子是k面均匀骰子的概率分布,它的困惑度恰好是k。一个拥有k困惑度的随机变量有着和k面均匀骰子一样多的不确定性,并且可以说该随机变量有着k个困惑度的取值(k-ways perplexed)。(在有限样本空间离散随机变量的概率分布中,均匀分布有着最大的熵)

困惑度有时也被用来衡量一个预测问题的难易程度。但这个方法不总是精确的。例如:在概率分布B(1,P=0.9)中,即取得1的概率是0.9,取得0的概率是0.1。

2. 概率模型的perplexity

用一个概率模型q去估计真实概率分布p,那么可以通过测试集中的样本来定义这个概率模型的困惑度。

其中测试样本x1, x2, …, xN是来自于真实概率分布p的观测值,b通常取2。因此,低的困惑度表示q对p拟合的越好,当模型q看到测试样本时,它会不会“感到”那么“困惑”。
我们指出,指数也可以看作是交叉熵,
其中  表示我们对真实分布下样本点x出现概率的估计。比如用p(x)=n/N.
 

3. 单词的perplexity

在自然语言处理中,困惑度是用来衡量语言概率模型优劣的一个方法。一个语言概率模型可以看成是在整过句子或者文段上的概率分布。(译者:例如每个分词位置上有一个概率分布,这个概率分布表示了每个词在这个位置上出现的概率;或者每个句子位置上有一个概率分布,这个概率分布表示了所有可能句子在这个位置上出现的概率)
比如,i这个句子位置上的概率分布的信息熵可能是190,或者说,i这个句子位置上出现的句子平均要用190 bits去编码,那么这个位置上的概率分布的困惑度就是2^(190)。(译者:相当于投掷一个2^(190)面筛子的不确定性)通常,我们会考虑句子有不同的长度,所以我们会计算每个分词上的困惑度。比如,一个测试集上共有1000个单词,并且可以用7.95个bits给每个单词编码,那么我们可以说这个模型上每个词有2^(7.95)=247 困惑度。相当于在每个词语位置上都有投掷一个247面骰子的不确定性。
在Brown corpus (1 million words of American English of varying topics and genres) 上报告的最低的困惑度就是247per word,使用的是一个trigram model(三元语法模型)。在一个特定领域的语料中,常常可以得到更低的困惑度。
要注意的是,这个模型用的是三元语法。直接预测下一个单词是”the”的正确率是7%。但如果直接应用上面的结果,算出来这个预测是正确的概率是1/247=0.4%,这就错了。(译者:不是说算出来就一定是0.4%,而是说这样算本身是错的)因为直接预测下一个词是”the“的话,我们是在使用一元语法,而247是来源于三元语法的。当我们在使用三元语法的时候,会考虑三元语法的统计数据,这样做出来的预测会不一样并且通常有更好的正确率。

语言模型评价指标Perplexity的更多相关文章

  1. LDA主题模型评估方法–Perplexity

    在LDA主题模型之后,需要对模型的好坏进行评估,以此依据,判断改进的参数或者算法的建模能力. Blei先生在论文<Latent Dirichlet Allocation>实验中用的是Per ...

  2. 斯坦福NLP课程 | 第15讲 - NLP文本生成任务

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  3. XLM论文原理解析

    1. 前言 近一年来,NLP领域发展势头强劲,从ELMO到LSTM再到去年最牛叉的Google Bert,在今年年初,Facebook又推出了XLM模型,在跨语言预训练领域表现抢眼.实验结果显示XLM ...

  4. 0-4评价一个语言模型Evaluating Language Models:Perplexity

    有了一个语言模型,就要判断这个模型的好坏. 现在假设: 我们有一些测试数据,test data.测试数据中有m个句子;s1,s2,s3-,sm 我们可以查看在某个模型下面的概率: 我们也知道,如果计算 ...

  5. 【NLP_Stanford课堂】语言模型2

    一.如何评价语言模型的好坏 标准:比起语法不通的.不太可能出现的句子,是否为“真实”或"比较可能出现的”句子分配更高的概率 过程:先在训练数据集上训练模型的参数,然后在测试数据集上测试模型的 ...

  6. 语言模型kenlm的训练及使用

    一.背景 近期研究了一下语言模型,同事推荐了一个比较好用的工具包kenlm,记录下使用过程. 二.使用kenlm训练 n-gram 1.工具介绍:http://kheafield.com/code/k ...

  7. 用python计算lda语言模型的困惑度并作图

    转载请注明:电子科技大学EClab——落叶花开http://www.cnblogs.com/nlp-yekai/p/3816532.html 困惑度一般在自然语言处理中用来衡量训练出的语言模型的好坏. ...

  8. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

  9. 学习笔记TF035:实现基于LSTM语言模型

    神经结构进步.GPU深度学习训练效率突破.RNN,时间序列数据有效,每个神经元通过内部组件保存输入信息. 卷积神经网络,图像分类,无法对视频每帧图像发生事情关联分析,无法利用前帧图像信息.RNN最大特 ...

随机推荐

  1. gtid 同步1050异常处理

    gtid 同步1050异常处理 .sql CREATE TABLE `fudao_student_lable` ( `id` ) NOT NULL AUTO_INCREMENT, `uid` ) un ...

  2. UI案例

    <Window x:Class="WpfDemo2.MainWindow" xmlns="http://schemas.microsoft.com/winfx/20 ...

  3. Gym 100971A Treasure Island BFS 思维题

    A - Treasure Island Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64 ...

  4. poi 1017 Packets 贪心+模拟

    Packets Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 48349   Accepted: 16392 Descrip ...

  5. JVM-GC算法(二)-复制算法&&标记整理算法

    这次我和各位分享GC最后两种算法,复制算法以及标记/整理算法.上一篇在讲解标记/清除算法时已经提到过,这两种算法都是在此基础上演化而来的,究竟这两种算法优化了之前标记/清除算法的哪些问题呢? 复制算法 ...

  6. DB 分库分表的基本思想和切分策略

    DB 分库分表的基本思想和切分策略 一.基本思想 Sharding的基本思想就要把一个数据库切分成多个部分放到不同的数据库(server)上,从而缓解单一数据库的性能问题.不太严格的讲,对于海量数据的 ...

  7. android data binding jetpack I 环境配置 model-view 简单绑定

    android data binding jetpack VIII BindingConversion android data binding jetpack VII @BindingAdapter ...

  8. [eclipse]如何修改Eclipse编辑器的字体

    步骤如下, 菜单->"Window"->“Preference”->“General”->“Appearance”->“Colors & Fo ...

  9. LC 244. Shortest Word Distance II 【lock, Medium】

    Design a class which receives a list of words in the constructor, and implements a method that takes ...

  10. OpenStack 的单元测试

    目录 文章目录 目录 前言 单元测试能提高生产率 Python 单元测试工具清单 unittest Test Discover Test Fixture Test Suite Assert(断言) m ...