题目链接

这道题的主要思想是贪心。

题目的要求用几个硬币将1~x的数都能够凑出的最少硬币个数。这里注意一下是都凑出而不是同时凑出。

先讨论什么时候无解。所有的自然数都可以用1堆砌而成。换而言之只要有1这个流氓在就可以凑齐。没有1就凑不出来1。

我们用一个数num表示我们目前凑完了sum这个数,准备凑下一个,要开始拿钱了,并且对于所有p(p<=sum)都能刚好凑出,又对于所有g(g>sum)凑不出。

那么我们这个时候要怎么拿钱呢。运用贪心思想,尽可能拿大的。那么什么时候是不可能的呢?即这个硬币q>sum+1时。因为这样就没有方法能够通过这个硬币与之前的凑出sum+1.

所以我们只需要选择q<=sum+1的同时q尽量大的硬币,这样子保证了q~sum+q都能被凑出。此时sum=sum+q

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int read(){
int res=,f=;
char ch=getchar();
while(ch<''||ch>''){
if(ch=='-')f=-;
ch=getchar();
}
while(ch>=''&&ch<=''){
res=res*+(ch-'');
ch=getchar();
}
return res*f;
}
int x,n,a[],sum,ans;
int main(){
x=read();n=read();
for(int i=;i<=n;++i){
a[i]=read();
}
sort(a+,a+n+);
if(a[]!=){
cout<<"-1";
return ;
}
while(sum<x){
int i;
for(i=n;i>=;i--)
if(a[i]<=sum+)break;
ans++;
sum+=a[i];
}
cout<<ans;
}

[Luogu P1658] 购物的更多相关文章

  1. 洛谷P1658 购物

    题目戳 题目描述 你就要去购物了,现在你手上有N种不同面值的硬币,每种硬币有无限多个.为了方便购物,你希望带尽量少的硬币,但要能组合出1到X之间的任意值. 输入输出格式 输入格式: 第一行两个数X.N ...

  2. 洛谷 P1658 购物

    题目链接 题目描述 你就要去购物了,现在你手上有N种不同面值的硬币,每种硬币有无限多个.为了方便购物,你希望带尽量少的硬币,但要能组合出1到X之间的任意值. 题目分析 题目要求组合出1到X之间的任意值 ...

  3. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  4. 数学【p1658】 购物

    题目描述 你就要去购物了,现在你手上有N种不同面值的硬币,每种硬币有无限多个.为了方便购物,你希望带尽量少的硬币,但要能组合出1到X之间的任意值. 分析: 看到题解做法没有说出原理,所以尝试解释一下. ...

  5. Luogu 1450 [HAOI2008]硬币购物

    优美的dp + 容斥. 首先可以不用考虑数量限制,处理一个完全背包$f_{i}$表示用四种面值的硬币购买的方案数,对于每一个询问,我们考虑容斥. 我们的$f_{s}$其实多包含了$f_{s - c_{ ...

  6. Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理

    考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...

  7. Luogu P1450 [HAOI2008]硬币购物

    题目 一个很自然的想法是容斥. 假如只有一种硬币,那么答案就是没有限制的情况下买\(s\)的方案数减去强制用了\(d+1\)枚情况下买\(s\)的方案数即没有限制的情况下买\(s-c(d+1)\)的方 ...

  8. Luogu 1060 开心的金明 / NOIP 2006 (动态规划)

    Luogu 1060 开心的金明 / NOIP 2006 (动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨 ...

  9. Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划)

    Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己 ...

随机推荐

  1. qt聊天室bug-- error: no matching function for call to 'Ui::Widget::setupUi(Widget*)' ui->setupUi(this); ^

  2. Mybatis-Plus myBatis的增强工具

    1. Mybatis-Plus简介 1.1. 什么是Mybatis-Plus MyBatis-Plus(简称 MP)是一个 MyBatis 的增强工具,在 MyBatis 的基础上只做增强不做改变,为 ...

  3. java——内存中的数组

    数组是一种引用类型,数组引用变量只是一个引用,数组元素和数组变量在内存中时分开存放的,下面我们看一下基本类型的数组和引用类型的数组在内存中的地址分布情况 基本类型数组: 我们先来看一段代码: publ ...

  4. mybatis相关知识积累

    mybatis Statement Statement对象用于将 SQL 语句发送到数据库中. 实际上有三种 Statement 对象,它们都作为在给定连接上执行 SQL语句的包容器: Stateme ...

  5. [NOIP2018模拟赛10.25]瞎搞报告

    闲扯 最近有点颓,都修到好晚,早上起来和吔shi一样难受 忍着困意把题面看完,发现啥也不会,又是一场写暴力的模拟赛 T1发现似乎可以DP,顺手码了个 T2像个最小瓶颈路板子,但是只做过N^2算法的.. ...

  6. js移动端回退监听 popstate

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. multer实现图片上传

    multer实现图片上传: ejs代码: <!DOCTYPE html> <html lang="en"> <head> <meta ch ...

  8. 关于NavigationBar的笔记

    1常用几个方法 全局 //设置navigationBar 的类型 ,ps: status bar的状态受navigationbar控制(当用navigationcontroller时,通过设置此属性改 ...

  9. 还在用ABAP进行SAP产品的二次开发?来了解下这种全新的二次开发理念吧

    Jerry从2018年底至今,已经写了一系列关于SAP Kyma的文章,您可以移步到本文末尾获得这些文章的列表.Kyma是SAP开源的一个基于Kubernetes的云原生应用开发平台,能够允许SAP的 ...

  10. ip地址、域名、DNS、URL(即网址)的区别与联系

    域名和ip ================================================================ 我们也知道每一台机都有一个唯一ip地址, 特别难记,所以出 ...