51nod 1843 排列合并机(DP+组合)
不过求ggg不用O(n2)DPO(n^2)DPO(n2)DP,g[n]g[n]g[n]直接就是卡特兰数的第n−1n-1n−1项。即:
g[n]=(2(n−1)n−1)−(2(n−1)n−2)g[n]=\binom{2(n-1)}{n-1}-\binom{2(n-1)}{n-2}g[n]=(n−12(n−1))−(n−22(n−1))
相当于在平面直角坐标系中,要从(0,0)(0,0)(0,0)走到(n,n)(n,n)(n,n),有一条线段y=x(x∈(0,n))y=x(x\in(0,n))y=x(x∈(0,n))不能触碰,注意是开区间。所以卡特兰数/组合数的计算方法就行了。
CODE
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 105;
int n, mod, g[MAXN], f[MAXN][MAXN][MAXN], fac[MAXN<<1], inv[MAXN<<1];
int C(int n, int m) { return m > n ? 0 : 1ll * fac[n] * inv[m] % mod * inv[n-m] % mod; }
int main(){
scanf("%d%d", &n, &mod);
fac[0] = inv[0] = inv[1] = fac[1] = 1;
for(int i = 2; i <= (n<<1); ++i){
fac[i] = 1ll * fac[i-1] * i %mod;
inv[i] = 1ll * (mod - mod/i) * inv[mod%i] % mod;
}
for(int i = 2; i <= (n<<1); ++i) inv[i] = 1ll * inv[i-1] * inv[i] % mod;
for(int i = 1; i <= n; ++i) g[i] = C(2*i - 2, i - 1) - C(2*i - 2, i - 2);
f[0][0][0] = 1;
for(int i = 0; i <= n; ++i)
for(int j = 0; j <= n; ++j) if(i || j) {
for(int k = max(0, i+j-n); k <= i && k <= j; ++k){
int &ret = f[i][j][k];
if(i && k) ret = (ret + 1ll * f[i-1][j][k-1] * (j-k+1)) % mod;
if(j && k) ret = (ret + 1ll * f[i][j-1][k-1] * (i-k+1)) % mod;
if(i) ret = (ret + 1ll * f[i-1][j][k] * (n - (i-1+j-k))) % mod;
if(j) ret = (ret + 1ll * f[i][j-1][k] * (n - (i+j-1-k))) % mod;
for(int d = 1; d <= k; ++d)
ret = (ret - 1ll * f[i-d][j-d][k-d] * C(n-(i+j-k-d), d) % mod * g[d] % mod * fac[d] % mod) % mod;
}
}
printf("%d\n", (f[n][n][n] + mod) % mod);
}
没做过这种类型的感觉好难。。
51nod 1843 排列合并机(DP+组合)的更多相关文章
- BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*
BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...
- 51nod 1250 排列与交换——dp
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1250 仔细思考dp. 第一问,考虑已知 i-1 个数有多少种方案. ...
- 51Nod 1250 排列与交换 —— DP
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1250 看了半天... 把第一问想成逆序对的话似乎很容易想了,新加入 ...
- 51Nod 1268 和为K的组合
51Nod 1268 和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...
- hdu 4945 2048 (dp+组合的数目)
2048 Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas
[题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...
- 51nod 1020 逆序排列 递推DP
1020 逆序排列 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...
- 51Nod 1021 石子合并 Label:Water DP
N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价.计算将N堆石子合并成一堆的最小代价. 例如: 1 2 3 4,有 ...
- 3.29省选模拟赛 除法与取模 dp+组合计数
LINK:除法与取模 鬼题.不过50分很好写.考虑不带除法的时候 其实是一个dp的组合计数. 考虑带除法的时候需要状压一下除法操作. 因为除法操作是不受x的大小影响的 所以要状压这个除法操作. 直接采 ...
随机推荐
- Snapshot Array
Implement a SnapshotArray that supports the following interface: SnapshotArray(int length) initializ ...
- mycat入门安装及demo实现
下载: https://github.com/MyCATApache/Mycat-download 安装: 直接解压 运行命令: linux: ./mycat start 启动 ./myca ...
- 题解 luoguP3554 【[POI2013]LUK-Triumphal arch】
代码的关键部分 inline void dfs(int u,int fa) { ; for(int i=first[u]; i; i=nxt[i]) { int v=go[i]; if(v==fa)c ...
- 少儿编程 | 01.Scratch 3.0简介
欢迎参加这套Scratch3.0少儿编程课程的学习.本系列课程将通过视频和图文的方式进行(视频制作中,后续会发布).如果喜欢本系列课程,欢迎点击订阅关注或者转发. 这是本系列课程的第一课,主要是给家长 ...
- SAS学习笔记46 宏变量的可使用范围
全局宏变量 在宏程序内部,除了使用%GLOBAL语句创建.在某些情况下,还可以直接使用DATA步中的CALL SYMPUT创建. 在一个宏程序中,在包含CALL SYMPUT的DATA步程序之前,如果 ...
- c++学习---const 和 string
当在两个文件定义了同名的const变量时,相对于定义了两个独立的变量 想要在一个文件中定义一个const变量并在其他文件中使用他:不管时声明还是定义,都加上extern关键字 因为const对象一经初 ...
- k8s-gitlab搭建
Gitlab官方提供了 Helm 的方式在 Kubernetes 集群中来快速安装,但是在使用的过程中发现 Helm 提供的 Chart 包中有很多其他额外的配置,所以我们这里使用自定义的方式来安装, ...
- 数据结构——java实现栈
栈 定义: 栈是一种先进后出的数据结构,我们把允许插入和删除的一端称为栈顶,另一端称为栈底,不含任何元素的栈称为空栈 栈的java代码实现: 基于数组: import org.junit.jupite ...
- 最快得到MYSQL两个表的差集
Mysql里不外乎就是 子查询 和 连接 两种方式. 设第一个表为table1, 第二个为table2, table1包含table2. sql为: //子查询 select table1.id fr ...
- Spring的SSM标准配置
一.首先是web.xml文件的配置 <welcome-file-list> <!--设置默认显示登陆界面--> <welcome-file>login.jsp< ...