1.文章原文地址

Going deeper with convolutions

2.文章摘要

我们提出了一种代号为Inception的深度卷积神经网络,它在ILSVRC2014的分类和检测任务上都取得当前最佳成绩。这种结构的主要特点是提高了网络内部计算资源的利用率。这是通过精心的设计实现的,它允许增加网络的深度和宽度,同时保持计算预算不变。为了提高效果,这个网络的架构确定是基于Hebbian原则和多尺度处理的直觉。其中一个典型的实例用于提交到ILSVRC2014上,我们称之为GoogLeNet,它是一个22层的深度网络,该网络的效果通过分类和检测任务来加以评估。

3.网络结构

4.Pytorch实现

 import warnings
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.model_zoo import load_url as load_state_dict_from_url
from torchsummary import summary __all__ = ['GoogLeNet', 'googlenet'] model_urls = {
# GoogLeNet ported from TensorFlow
'googlenet': 'https://download.pytorch.org/models/googlenet-1378be20.pth',
} _GoogLeNetOuputs = namedtuple('GoogLeNetOuputs', ['logits', 'aux_logits2', 'aux_logits1']) def googlenet(pretrained=False, progress=True, **kwargs):
r"""GoogLeNet (Inception v1) model architecture from
`"Going Deeper with Convolutions" <http://arxiv.org/abs/1409.4842>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
aux_logits (bool): If True, adds two auxiliary branches that can improve training.
Default: *False* when pretrained is True otherwise *True*
transform_input (bool): If True, preprocesses the input according to the method with which it
was trained on ImageNet. Default: *False*
"""
if pretrained:
if 'transform_input' not in kwargs:
kwargs['transform_input'] = True
if 'aux_logits' not in kwargs:
kwargs['aux_logits'] = False
if kwargs['aux_logits']:
warnings.warn('auxiliary heads in the pretrained googlenet model are NOT pretrained, '
'so make sure to train them')
original_aux_logits = kwargs['aux_logits']
kwargs['aux_logits'] = True
kwargs['init_weights'] = False
model = GoogLeNet(**kwargs)
state_dict = load_state_dict_from_url(model_urls['googlenet'],
progress=progress)
model.load_state_dict(state_dict)
if not original_aux_logits:
model.aux_logits = False
del model.aux1, model.aux2
return model return GoogLeNet(**kwargs) class GoogLeNet(nn.Module): def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True):
super(GoogLeNet, self).__init__()
self.aux_logits = aux_logits
self.transform_input = transform_input self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True) #向上取整
self.conv2 = BasicConv2d(64, 64, kernel_size=1)
self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128) if aux_logits:
self.aux1 = InceptionAux(512, num_classes)
self.aux2 = InceptionAux(528, num_classes) self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout(0.2)
self.fc = nn.Linear(1024, num_classes) if init_weights:
self._initialize_weights() def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
import scipy.stats as stats
X = stats.truncnorm(-2, 2, scale=0.01)
values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
values = values.view(m.weight.size())
with torch.no_grad():
m.weight.copy_(values)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0) def forward(self, x):
if self.transform_input:
x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
x = torch.cat((x_ch0, x_ch1, x_ch2), 1) # N x 3 x 224 x 224
x = self.conv1(x)
# N x 64 x 112 x 112
x = self.maxpool1(x)
# N x 64 x 56 x 56
x = self.conv2(x)
# N x 64 x 56 x 56
x = self.conv3(x)
# N x 192 x 56 x 56
x = self.maxpool2(x) # N x 192 x 28 x 28
x = self.inception3a(x)
# N x 256 x 28 x 28
x = self.inception3b(x)
# N x 480 x 28 x 28
x = self.maxpool3(x)
# N x 480 x 14 x 14
x = self.inception4a(x)
# N x 512 x 14 x 14
if self.training and self.aux_logits:
aux1 = self.aux1(x) x = self.inception4b(x)
# N x 512 x 14 x 14
x = self.inception4c(x)
# N x 512 x 14 x 14
x = self.inception4d(x)
# N x 528 x 14 x 14
if self.training and self.aux_logits:
aux2 = self.aux2(x) x = self.inception4e(x)
# N x 832 x 14 x 14
x = self.maxpool4(x)
# N x 832 x 7 x 7
x = self.inception5a(x)
# N x 832 x 7 x 7
x = self.inception5b(x)
# N x 1024 x 7 x 7 x = self.avgpool(x)
# N x 1024 x 1 x 1
x = x.view(x.size(0), -1)
# N x 1024
x = self.dropout(x)
x = self.fc(x)
# N x 1000 (num_classes)
if self.training and self.aux_logits:
return _GoogLeNetOuputs(x, aux2, aux1)
return x class Inception(nn.Module): #Inception模块 def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
super(Inception, self).__init__() self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1) self.branch2 = nn.Sequential(
BasicConv2d(in_channels, ch3x3red, kernel_size=1),
BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
) self.branch3 = nn.Sequential(
BasicConv2d(in_channels, ch5x5red, kernel_size=1),
BasicConv2d(ch5x5red, ch5x5, kernel_size=3, padding=1)
) self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
BasicConv2d(in_channels, pool_proj, kernel_size=1)
) def forward(self, x):
branch1 = self.branch1(x)
branch2 = self.branch2(x)
branch3 = self.branch3(x)
branch4 = self.branch4(x) outputs = [branch1, branch2, branch3, branch4]
return torch.cat(outputs, 1) class InceptionAux(nn.Module): #辅助分支 def __init__(self, in_channels, num_classes):
super(InceptionAux, self).__init__()
self.conv = BasicConv2d(in_channels, 128, kernel_size=1) self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, num_classes) def forward(self, x):
# aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
x = F.adaptive_avg_pool2d(x, (4, 4))
# aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
x = self.conv(x)
# N x 128 x 4 x 4
x = x.view(x.size(0), -1)
# N x 2048
x = F.relu(self.fc1(x), inplace=True)
# N x 1024
x = F.dropout(x, 0.7, training=self.training)
# N x 1024
x = self.fc2(x)
# N x num_classes return x class BasicConv2d(nn.Module): #Conv2d+BN+Relu def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True) if __name__=="__main__":
model=googlenet()
print(model,(3,224,224))

参考

https://github.com/pytorch/vision/tree/master/torchvision/models

GoogLeNet网络的Pytorch实现的更多相关文章

  1. 跟我学算法-图像识别之图像分类(下)(GoogleNet网络, ResNet残差网络, ResNext网络, CNN设计准则)

    1.GoogleNet 网络: Inception V1 - Inception V2 - Inception V3 - Inception V4 1. Inception v1 split - me ...

  2. 群等变网络的pytorch实现

    CNN对于旋转不具有等变性,对于平移有等变性,data augmentation的提出就是为了解决这个问题,但是data augmentation需要很大的模型容量,更多的迭代次数才能够在训练数据集合 ...

  3. U-Net网络的Pytorch实现

    1.文章原文地址 U-Net: Convolutional Networks for Biomedical Image Segmentation 2.文章摘要 普遍认为成功训练深度神经网络需要大量标注 ...

  4. ResNet网络的Pytorch实现

    1.文章原文地址 Deep Residual Learning for  Image Recognition 2.文章摘要 神经网络的层次越深越难训练.我们提出了一个残差学习框架来简化网络的训练,这些 ...

  5. AlexNet网络的Pytorch实现

    1.文章原文地址 ImageNet Classification with Deep Convolutional Neural Networks 2.文章摘要 我们训练了一个大型的深度卷积神经网络用于 ...

  6. VGG网络的Pytorch实现

    1.文章原文地址 Very Deep Convolutional Networks for Large-Scale Image Recognition 2.文章摘要 在这项工作中,我们研究了在大规模的 ...

  7. googLeNet网络

    1.什么是inception结构 2.什么是Hebbian原理 3.什么是多尺度处理 最近深度学习的发展,大多来源于新的想法,算法以及网络结构的改善,而不是依赖于硬件,新的数据集,更深的网络,并且深度 ...

  8. SegNet网络的Pytorch实现

    1.文章原文地址 SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation 2.文章摘要 语义分 ...

  9. 深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)

    一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32 ...

随机推荐

  1. ELK之7版本Elastic Maps功能介绍

    Elasticsearch 7.0 中还引入了一个新的聚合来处理地理地图图块,允许用户在地图上放大和缩小,而不会改变结果数据的形状,实现更加平滑地缩放 Elastic Maps:使用纳秒精度存储时序数 ...

  2. linux 软连接【转】

    https://www.cnblogs.com/kex1n/p/5193826.html这是linux中一个非常重要命令,请大家一定要熟悉.它的功能是为某一个文件在另外一个位置建立一个同不的链接,这个 ...

  3. 批处理快速合并多分Excel文件并将指定列的数据去重复

    1.批处理快速合并多个excel文件方法: 新建一个.txt文本文件,就命名为合并.txt吧. 而后开启文件,复制以下代码到文件中: @echo off E: cd xls dir copy *.cs ...

  4. SSH 连接时间超时

    linux服务端 # vi /etc/ssh/sshd_config ClientAliveInterval 60 ClientAliveCountMax 3 # 注: # ClientAliveIn ...

  5. 《C语言程序设计》课程教学目录

    <C语言程序设计>课程教学目录 不要去精确定义单个论题,应将一整套问题组织成体系.--黎曼(1826-1866)德国著名数学家 教学过程 2018年秋季学期 C语言程序设计I-第一周教学 ...

  6. [bzoj4240]有趣的家庭菜园_树状数组

    有趣的家庭菜园 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4240 数据范围:略. 题解: 第一步比较简单,只需要排序之后,每个数不是在左边就 ...

  7. python安装OpenCV – 4.1.0

    (python3) [jiangshan@localhost ~]$ pip install opencv_python==4.1.0Collecting opencv_python==4.1.0 E ...

  8. C++中数组占用的内存计算

    在C++中int类型每个空间是4个字节,long long int 是8个字节,而bool类型是1个字节 所以一般能用bool就别用int,节约空间 数组占用内存的计算 a[1001][1001]的空 ...

  9. C++ 中 static 与 const 的用法及对比

    在这个学习过程中我对 static 及 const 的使用时常会混淆,因此整理,加深记忆 一.类的静态成员 如果某个属性为整个类所共有,不属于任何一个具体对象,则采用 static 关键字来声明静态成 ...

  10. 织梦/dedecms采集怎么去除a标签

    dedecms采集去除a标签代码 DedeCMS采集规则-过滤-替换-技巧2009-01-14 15:491.采集去除链接[Copy to clipboard]CODE:{dede:trim}]*)& ...