RNN

RNN(Recurrent Neural Networks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息。由于其特殊的网络模型结构解决了信息保存的问题。所以RNN对处理时间序列和语言文本序列问题有独特的优势。递归神经网络都具有一连串重复神经网络模块的形式。在标准的RNNs中,这种重复模块有一种非常简单的结构。

 
 

那么S(t+1) = tanh( U*X(t+1) + W*S(t))。tanh激活函数图像如下:

 激活函数tanh把状态S值映射到-1和1之间.

RNN通过BPTT算法反向传播误差,它与BP相似,只不过与时间有关。RNN同样通过随机梯度下降(Stochastic gradient descent)算法使得代价函数(损失函数)值达到最小。

 
 BBPT算法规则如下:
 
 但是随着时间间隔不断增大时,RNN会丧失学习到连接很远的信息能力(梯度消失)。原因如下:

RNN的激活函数tanh可以将所有值映射到-1至1之间,以及在利用梯度下降算法调优时利用链式法则,那么会造成很多个小于1的项连乘就很快的逼近零。

依赖于我们的激活函数和网络参数,也可能会产生梯度爆炸(如激活函数是Relu,而LSTM采用的激活函数是sigmoid和tanh,从而避免了梯度爆炸的情况)。一般靠裁剪后的优化算法即可解决,比如gradient clipping(如果梯度的范数大于某个给定值,将梯度同比收缩)。

合适的初始化矩阵W可以减小梯度消失效应,正则化也能起作用。更好的方法是选择ReLU而不是sigmoid和tanh作为激活函数。ReLU的导数是常数值0或1,所以不可能会引起梯度消失。更通用的方案时采用长短时记忆(LSTM)或门限递归单元(GRU)结构。

那么,接下来我们来了解LSTM是如何解决梯度消失问题的

LSTM

LSTM (Long Short Term Memory networks)的“门”结构可以截取“不该截取的信息”,结构如下:

 
 在上面的图中,每条线表示一个完整向量,从一个节点的输出到其他节点的输入。粉红色圆圈代表逐点操作,比如向量加法,而黄色框框表示的是已学习的神经网络层。线条合并表示串联,线条分叉表示内容复制并输入到不同地方。
LSTMs核心理念

LSTMs的关键点是细胞状态,就是穿过图中的水平线。

单元状态有点像是个传送带。它贯穿整个链条,只有一些线性相互作用。这很容易让信息以不变的方式向下流动。

 
 其中,C(t-1)相当于上面我们讲的RNN中的S(t-1), C(t)相当于S(t).

LSTM有能力向单元状态中移除或添加信息,通过门结构来管理,包括“遗忘门”,“输出门”,“输入门”。通过门让信息选择性通过,来去除或增加信息到细胞状态. 模块中sigmoid层输出0到1之间的数字,描述了每个成分应该通过门限的程度。0表示“不让任何成分通过”,而1表示“让所有成分通过!”

第一步

 
 上图是遗忘门的展示,首先将上一时刻的输出h(t-1)和这一时刻的输入进x(t)行拼接(concat),然后判断以多大的程度来保留这部分信息(得到概率值).
第二步
 
 上图是输入门结构,i(t)等式表达的是我们以多大概率来更新信息,
 
 

表示现在的全部信息。

第三步
 
 首先把旧状态与f(t)相乘,就丢弃掉我们确定需要丢弃的信息,然后将
 
 

以确定要更新的信息,通过相加操作得到新的细胞状态Ct.

第四步
 
 LSTM和RNN相同都是利用BPTT传播和随机梯度或者其他优化算法来拟合参数。

至此,我们在这里再次强调一下LSTM是如何解决长时依赖问题的:
在RNN中,当前状态值S(t)= tanh(x(t) * U + W * S(t-1)),正如上面所述在利用梯度下降算法链式求导时是连乘的形式,若其中只要有一个是接近零的,那么总体值就容易为0,导致梯度消失,不能解决长时依赖问题。

而LSTM更新状态值:

 
 

是相加的形式,所以不容易出现状态值逐渐接近0的情况。

TensorFlow(十一):递归神经网络(RNN与LSTM)的更多相关文章

  1. 使用TensorFlow的递归神经网络(LSTM)进行序列预测

    本篇文章介绍使用TensorFlow的递归神经网络(LSTM)进行序列预测.作者在网上找到的使用LSTM模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的. 所以呢,这里是基于历史观察数 ...

  2. 递归神经网络(RNN)简介(转载)

    在此之前,我们已经学习了前馈网络的两种结构--多层感知器和卷积神经网络,这两种结构有一个特点,就是假设输入是一个独立的没有上下文联系的单位,比如输入是一张图片,网络识别是狗还是猫.但是对于一些有明显的 ...

  3. 基于TensorFlow的循环神经网络(RNN)

    RNN适用场景 循环神经网络(Recurrent Neural Network)适合处理和预测时序数据 RNN的特点 RNN的隐藏层之间的节点是有连接的,他的输入是输入层的输出向量.extend(上一 ...

  4. lecture7-序列模型及递归神经网络RNN

    Hinton 第七课 .这里先说下RNN有recurrent neural network 和 recursive neural network两种,是不一样的,前者指的是一种人工神经网络,后者指的是 ...

  5. lecture7-序列模型及递归神经网络RNN(转载)

    Hinton 第七课 .这里先说下RNN有recurrent neural network 和 recursive neural network两种,是不一样的,前者指的是一种人工神经网络,后者指的是 ...

  6. 循环神经网络RNN及LSTM

    一.循环神经网络RNN RNN综述 https://juejin.im/entry/5b97e36cf265da0aa81be239 RNN中为什么要采用tanh而不是ReLu作为激活函数?  htt ...

  7. 写给程序员的机器学习入门 (五) - 递归模型 RNN,LSTM 与 GRU

    递归模型的应用场景 在前面的文章中我们看到的多层线性模型能处理的输入数量是固定的,如果一个模型能接收两个输入那么你就不能给它传一个或者三个.而有时候我们需要根据数量不一定的输入来预测输出,例如文本就是 ...

  8. 深度学习原理与框架-递归神经网络-RNN网络基本框架(代码?) 1.rnn.LSTMCell(生成单层LSTM) 2.rnn.DropoutWrapper(对rnn进行dropout操作) 3.tf.contrib.rnn.MultiRNNCell(堆叠多层LSTM) 4.mlstm_cell.zero_state(state初始化) 5.mlstm_cell(进行LSTM求解)

    问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse)  # 构建 ...

  9. tensorflow 笔记8:RNN、Lstm源码,训练代码输入输出,维度分析

    tensorflow 官网信息:https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell tensorflow 版 ...

随机推荐

  1. Kafka 的这些原理你知道吗

    如果只是为了开发 Kafka 应用程序,或者只是在生产环境使用 Kafka,那么了解 Kafka 的内部工作原理不是必须的.不过,了解 Kafka 的内部工作原理有助于理解 Kafka 的行为,也利用 ...

  2. html页面在苹果手机内,safari浏览器,微信中滑动不流畅问题解决方案

    1. -webkit-overflow-scrolling:touch是什么? MDN上是这样定义的: -webkit-overflow-scrolling 属性控制元素在移动设备上是否使用滚动回弹效 ...

  3. Spring Cloud Alibaba学习笔记(11) - RocketMQ事务消息

    在Spring中,我们要实现事务,一般通过@Transactional注解实现.这在引入RocketMQ之前没有问题,但是在引入了RocketMQ之后,如果消息发送之后的业务逻辑处理发生了异常的话,这 ...

  4. VS.NET(C#)--1.5_VS菜单功能

    VS菜单功能 文件菜单 1.新建 2.添加 编辑菜单 1.快速查找  ctrl+F 2.快速替换   ctrl+H 3.在文件中查找ctrl+shift+F 4.在文件中替换ctrl+shift+H ...

  5. windowsAPI创建句柄失败的返回值

    创建句柄的api返回值 INVALID_HANDLE_VALUE CreateFile CreateNamedPipe CreateToolhelp32Snapshot FilterConnectCo ...

  6. Pytorch:module 'torch' has no attribute 'bool'

    Pytorch:module 'torch' has no attribute 'bool' 这个应该是有些版本的Pytorch会遇到这个问题,我用0.4.0版本测试发现torch.bool是有的,但 ...

  7. 关于Echarts柱状图点击事件的实现方法

    开发过程中,我们经常会碰到这样的需求:在柱状图上,点击某条柱形,调用相应的方法或跳转相应的界面 接下来就详细介绍如何实现柱状图的点击事件,其中maChart是绘图对象 一.简单的点击事件 myChar ...

  8. 关于lock和synchronized的选择

    这里不介绍具体用法,介绍lock和synchronized的不同从而做出选择 1.lock是一个接口,而synchronized是java中的一个关键字,synchronized是内置的语言实现. 2 ...

  9. 互联网项目中mysql推荐(读已提交RC)的事务隔离级别

    [原创]互联网项目中mysql应该选什么事务隔离级别 Mysql为什么不和Oracle一样使用RC,而用RR 使用RC的原因 这个是有历史原因的,当然要从我们的主从复制开始讲起了!主从复制,是基于什么 ...

  10. Lumen5.6使用JWT【最新教程】,亲身失败百次的总结

    一.前言 如果需要使用 Passport,可以参考在下之前的教程: 'Lumen5.4配置OAuth2.0[强迫症,就是要用最新版本的Lumen]' . 由于原作者文档的简洁性,同时 Lumen 下的 ...