BZOJ1856[Scoi2010]字符串——组合数学+容斥
题目描述
输入
输出
样例输入
样例输出
提示
【数据范围】
对于30%的数据,保证1<=m<=n<=1000
对于100%的数据,保证1<=m<=n<=1000000
将选$1$看成往右走,选$0$看成往上走,那么要求的就是从$n*m$的网格的左下角走到右上角且不能穿过$y=x$的方案数。
将不能穿过$y=x$看成不能走到$y=x+1$,答案就是总方案数(即没有不能穿过$y=x$限制的方案数)-走到$y=x+1$的方案数。
将起点关于$y=x+1$对称到$(-1,1)$,那么走到$y=x+1$的方案数就是从$(-1,1)$走到$(n,m)$只能往右和往上走的方案数。
最终答案就是$C_{n+m}^{n}-C_{n+m}^{n+1}$,注意当$n<m$时答案为$0$。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int mod=20100403;
int n,m;
int fac[2000010];
int inv[2000010];
int C(int n,int m)
{
return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main()
{
scanf("%d%d",&n,&m);
inv[0]=inv[1]=fac[0]=fac[1]=1;
for(int i=2;i<=n+m;i++)
{
fac[i]=1ll*fac[i-1]*i%mod;
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
for(int i=2;i<=n+m;i++)
{
inv[i]=1ll*inv[i-1]*inv[i]%mod;
}
if(n>=m)
{
printf("%d",(C(n+m,n)-C(n+m,n+1)+mod)%mod);
}
else
{
printf("0");
}
}
BZOJ1856[Scoi2010]字符串——组合数学+容斥的更多相关文章
- bzoj1853[Scoi2010]幸运数字 容斥
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 3027 Solved: 1128[Submit][Status ...
- HDU 6397 Character Encoding (组合数学 + 容斥)
题意: 析:首先很容易可以看出来使用FFT是能够做的,但是时间上一定会TLE的,可以使用公式化简,最后能够化简到最简单的模式. 其实考虑使用组合数学,如果这个 xi 没有限制,那么就是求 x1 + x ...
- [BZOJ1853][Scoi2010]幸运数字 容斥+搜索剪枝
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 3202 Solved: 1198[Submit][Status ...
- [CSP-S模拟测试]:多维网格(组合数学+容斥)
题目传送门(内部题138) 输入格式 输入数据第一行为两个整数$d,n$. 第二行$d$个非负整数$a_1,a_2,...,a_d$. 接下来$n$行,每行$d$个整数,表示一个坏点的坐标.数 ...
- [BZOJ2839]:集合计数(组合数学+容斥)
题目传送门 题目描述 .(是质数喔~) 输入格式 一行两个整数N,K. 输出格式 一行为答案. 样例 样例输入: 3 2 样例输出: 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB, ...
- 【XSY2990】树 组合数学 容斥
题目描述 同 Comb Avoiding Trees 不过只用求一项. \(n,k\leq {10}^7\) 题解 不难发现一棵 \(n\) 个叶子的树唯一对应了一个长度为 \(2n-2\) 的括号序 ...
- 2019.02.11 bzoj4767: 两双手(组合数学+容斥dp)
传送门 题意简述:你要从(0,0)(0,0)(0,0)走到(ex,ey)(ex,ey)(ex,ey),每次可以从(x,y)(x,y)(x,y)走到(x+ax,y+ay)(x+ax,y+ay)(x+ax ...
- BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- HDU 6397 组合数学+容斥 母函数
Character Encoding Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Oth ...
随机推荐
- 线程三(Mutex)
C# 中 Mutex 类也是用于线程同步操作的类,例如,当多个线程同时访问一个资源时保证一次只能有一个线程访问资源. 在 Mutex 类中,WaitOne() 方法用于等待资源被释放, Release ...
- vue动态绘制四分之三圆环
参照网上的一个案例“参照的为绘制的是一个动态的圆环”,现在我的需求是改编成四分之三的圆环实现效果: 样式展示 canvas绘图基本操作设置就可以参考源代码链接:原文:https://blog.csdn ...
- element-ui上传一张图片后隐藏上传按钮
来自:https://github.com/ElemeFE/element/issues/3367#issuecomment-376402380 侵删 el-upload里面绑定一个占位class: ...
- Java 之 ObjectOutputStream 类
ObjectOutputStream 类 1.概述 java.io.ObjectOutputStream extends OutputStream ObjectOutputStream:对象的序列化流 ...
- 2743711 - Possible Unexpected Results When Using Query With an ORDER BY Clause on a Rowstore Table With a Parallelized Search on a Cpbtree-Type Index
2743711 - Possible Unexpected Results When Using Query With an ORDER BY Clause on a Rowstore Table W ...
- springboot学习入门简易版四---springboot2.0静态资源访问及整合freemarker视图层
2.4.4 SpringBoot静态资源访问(9) Springboot默认提供静态资源目录位置需放在classpath下,目录名需要符合如下规则 /static /public /resourc ...
- linux跳板机开发之trap信号机应用
场景1:公司新招聘了一个配置管理员,他的工作是负责将公司开发人员写的新代码依次分发到办公室测试环境.IDC测试环境和正式线上环境.因此公司需要开发一个程序,当配置管理员登录服务器,只能进入分发的管理界 ...
- 在Linux中安装适用于arm64位的nodejs
# 安装适用于arm64位的nodejs runtime v10.16.3 mkdir /runtimes cd /runtimes wget https://nodejs.org/dist/v10. ...
- dict sorted by value. 字典根据 值排序
d = [('a', 24), ('g', 52), ('i', 12)] print(sorted(d),key = lambda x:x[1]) sorted (字典,排序的依据: 字典[key] ...
- jFinal的小知识点总结
sql批处理 // 批处理sql List<String> sqlList = new ArrayList<String>(); sqlList.add("delet ...