前几篇文章,我们讨论了如何使用mutex保护数据及使用使用condition variable在多线程中进行同步。然而,使用mutex将会导致一下问题:

  • 等待互斥锁会消耗宝贵的时间 — 有时候是很多时间。这种延迟会损害系统的scalability。尤其是在现在可用的core越多越多的情况下。
  • 低优先级的线程可以获得互斥锁,因此阻碍需要同一互斥锁的高优先级线程。这个问题称为优先级倒置(priority inversion )
  • 可能因为分配的时间片结束,持有互斥锁的线程被取消调度。这对于等待同一互斥锁的其他线程有不利影响,因为等待时间现在会更长。这个问题称为锁护送(lock convoying)

互斥锁的问题还不只这些。早在1994年10月,John D. Valois 在拉斯维加斯的并行和分布系统系统国际大会上的一篇论文—《Implementing Lock-Free Queues》已经研究了无锁队列的实现,有兴趣的可以拜读一下。

实现无锁数据结构的基础是CAS:Compare & Set,或是 Compare & Swap。CAS用C语言描述的代码(来自Wikipedia Compare And Swap)

int compare_and_swap (int* reg, int oldval, int newval)
{
ATOMIC();
int old_reg_val = *reg;
if (old_reg_val == oldval)
*reg = newval;
END_ATOMIC();
return old_reg_val;
}

CAS是个原子操作,保证了如果需要更新的地址没有被他人改动多,那么它可以安全的写入。而这也是我们对于某个数据或者数据结构加锁要保护的内容,保证读写的一致性,不出现dirty data。现在几乎所有的CPU指令都支持CAS的原子操作,X86下对应的是 CMPXCHG 汇编指令现在,我们将使用CAS来实现无锁的stack,然后你就能够理解CAS的用法了。

C++11中CAS实现:

template< class T>
struct atomic
{
public:
bool compare_exchange_weak( T& expected, T desired,
std::memory_order success,
std::memory_order failure );
bool compare_exchange_weak( T& expected, T desired,
std::memory_order success,
std::memory_order failure ) volatile;
bool compare_exchange_weak( T& expected, T desired,
std::memory_order order =
std::memory_order_seq_cst );
bool compare_exchange_weak( T& expected, T desired,
std::memory_order order =
std::memory_order_seq_cst ) volatile;
bool compare_exchange_strong( T& expected, T desired,
std::memory_order success,
std::memory_order failure );
bool compare_exchange_strong( T& expected, T desired,
std::memory_order success,
std::memory_order failure ) volatile;
bool compare_exchange_strong( T& expected, T desired,
std::memory_order order =
std::memory_order_seq_cst );
bool compare_exchange_strong( T& expected, T desired,
std::memory_order order =
std::memory_order_seq_cst ) volatile;
...
};

Please refer to http://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange to more information.

对上面的版本进行一下说明。翻译自上述url:

Atomically compares the value stored in *this with the value of
expected
, and if those are equal, replaces the former with desired (performs read-modify-write operation). Otherwise, loads the actual value stored in*this intoexpected (performs load operation).

自动的比较*this的值和expect的值,如果相等,那么将*this的值替换为desired的值(进行读-修改-写操作)。否则如果不相等,那么将*this的值存到expected处。

伪码就是:

if *this == expected:

    *this = desired;

else:

    expected = *this;

The memory models for the read-modify-write and load operations aresuccess andfailure respectively. In the (2) and (4) versionsorder is used for both read-modify-write and load operations, except thatstd::memory_order_release
andstd::memory_order_relaxed are used for the load operation iforder==std::memory_order_acq_rel,
ororder==std::memory_order_release
respectively.

success对应于read-modify-write的内存模型;failure则对应于失败时的load。对于order
= std::memory_order_seq_cst的函数,那么该memory order适用于read-modify-write and load,除非是如果order==std::memory_order_acq_rel,那么load将使用std::memory_order_release;如果order==std::memory_order_release,那么load将使用std::memory_order_relaxed

更多信息memory order请阅读:http://en.cppreference.com/w/cpp/atomic/memory_order

The weak forms (1-2) of the functions are allowed to fail spuriously, that is, act as if*this!= expected even
if they are equal. When a compare-and-exchange is in a loop, the weak version will yield better performance on some platforms. When a weak compare-and-exchange would require a loop and a strong one would not, the strong one is preferable.

weak形式允许假失败,该函数直接比较原子对象所封装的值与参数 expected 的物理内容,所以某些情况下,对象的比较操作在使用 operator==() 判断时相等,但 compare_exchange_weak 判断时却可能失败,因为对象底层的物理内容中可能存在位对齐或其他逻辑表示相同但是物理表示不同的值(比如 true 和 2 或 3,它们在逻辑上都表示"真",但在物理上两者的表示并不相同)。可以虚假的返回false(和expected相同)。若本atomic的T值和expected相同则用val值替换本atomic的T值,返回true;若不同则用本atomic的T值替换expected,返回false。
 

与compare_exchange_weak 不同, strong版本的 compare-and-exchange 操作不允许(spuriously 地)返回 false,即原子对象所封装的值与参数 expected 的物理内容相同,比较操作一定会为 true。不过在某些平台下,如果算法本身需要循环操作来做检查, compare_exchange_weak 的性能会更好。因此对于某些不需要采用循环操作的算法而言, 通常采用compare_exchange_strong 更好

下面代码部分来自http://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange。

#include <atomic>
#include <string>
#include <iostream>
using namespace std;
template<typename T>
struct node
{
T data;
node* next;
node(const T& data) : data(data), next(nullptr) {}
}; template<typename T>
class stack
{
std::atomic<node<T>*> head; public:
stack():head(nullptr){}
void push(const T& data);
T pop();
};

注意在这里添加了stack的构造函数,把head初始化为nullptr。如果不初始化它为nullptr,那么使用链表存储的stack将无法确定终点在哪儿。。。

首先看一下push的实现:

    void push(const T& data)
{
node<T>* new_node = new node<T>(data); // put the current value of head into new_node->next
new_node->next = head.load(std::memory_order_relaxed); // now make new_node the new head, but if the head
// is no longer what's stored in new_node->next
// (some other thread must have inserted a node just now)
// then put that new head into new_node->next and try again
while(!head.compare_exchange_weak(new_node->next,
new_node,
std::memory_order_release,
std::memory_order_relaxed))
; // the body of the loop is empty
}

主要是理解这两句:

head.compare_exchange_weak(new_node->next,
new_node,

可以简单用一下代码来概括该调用的效果:

if ( head == new_node->new){
head = new_node;
return true;
}
else{
new_node->next = head;
return false;
}

因此,如果没有其他的线程push,那么head将指向当前的new_node,push完成。否则,说明其他线程push过新数据,那么将当前push的新节点重新放到顶端,此时的head是最新的head。这样,通过CAS,我们可以实现了thread-safe stack。

接下来看一下pop:

    T pop()
{
while(1){
auto result = head.load(std::memory_order_relaxed);
if (result == nullptr)
throw std::string("Cannot pop from empty stack");
if(head.compare_exchange_weak(result,result->next,
std::memory_order_release,
std::memory_order_relaxed))
return result->data;
}
}

我们为什么要限制result != nullptr?因为有可能当前stack仅有一个元素,线程B在pop时被调度,线程A pop成功,那么线程B再pop就会出问题。

其实,上述的pop可以简化,因为result其实在failed时候已经更新为head了。因此简化代码可以是:

  T pop()
{
auto result = head.load(std::memory_order_relaxed);
while( result != nullptr && !head.compare_exchange_weak(result,result->next,
std::memory_order_release,
std::memory_order_relaxed));
if( result != nullptr)
return result->data;
else
throw std::string("Cannot pop from empty stack");
}

尊重原创,转载请注明出处: anzhsoft http://blog.csdn.net/anzhsoft/article/details/19125619

参考资料:

1. http://en.wikipedia.org/wiki/Compare-and-swap

2. http://en.wikipedia.org/wiki/Fetch-and-add

3. http://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange

4. http://technet.microsoft.com/zh-cn/hh874698

更多学习:

1. GCC实现 http://www.oschina.net/translate/a-fast-lock-free-queue-for-cpp?cmp

2. GCC实现 http://www.ibm.com/developerworks/cn/aix/library/au-multithreaded_structures2/index.html

陈皓同学的精彩博文: http://coolshell.cn/articles/8239.html

并发编程入门(三): 使用C++11实现无锁stack(lock-free stack)的更多相关文章

  1. Java并发编程入门与高并发面试(三):线程安全性-原子性-CAS(CAS的ABA问题)

    摘要:本文介绍线程的安全性,原子性,java.lang.Number包下的类与CAS操作,synchronized锁,和原子性操作各方法间的对比. 线程安全性 线程安全? 线程安全性? 原子性 Ato ...

  2. 脑残式网络编程入门(三):HTTP协议必知必会的一些知识

    本文原作者:“竹千代”,原文由“玉刚说”写作平台提供写作赞助,原文版权归“玉刚说”微信公众号所有,即时通讯网收录时有改动. 1.前言 无论是即时通讯应用还是传统的信息系统,Http协议都是我们最常打交 ...

  3. [Java并发编程(三)] Java volatile 关键字介绍

    [Java并发编程(三)] Java volatile 关键字介绍 摘要 Java volatile 关键字是用来标记 Java 变量,并表示变量 "存储于主内存中" .更准确的说 ...

  4. 并发编程(三)Promise, Future 和 Callback

    并发编程(三)Promise, Future 和 Callback 异步操作的有两个经典接口:Future 和 Promise,其中的 Future 表示一个可能还没有实际完成的异步任务的结果,针对这 ...

  5. Java并发编程原理与实战四十二:锁与volatile的内存语义

    锁与volatile的内存语义 1.锁的内存语义 2.volatile内存语义 3.synchronized内存语义 4.Lock与synchronized的区别 5.ReentrantLock源码实 ...

  6. [并发编程 - 多线程:信号量、死锁与递归锁、时间Event、定时器Timer、线程队列、GIL锁]

    [并发编程 - 多线程:信号量.死锁与递归锁.时间Event.定时器Timer.线程队列.GIL锁] 信号量 信号量Semaphore:管理一个内置的计数器 每当调用acquire()时内置计数器-1 ...

  7. 并发编程(三): 使用C++11实现无锁stack(lock-free stack)

    前几篇文章,我们讨论了如何使用mutex保护数据及使用使用condition variable在多线程中进行同步.然而,使用mutex将会导致一下问题: 等待互斥锁会消耗宝贵的时间 - 有时候是很多时 ...

  8. 【Java并发编程】6、volatile关键字解析&内存模型&并发编程中三概念

    volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在Java 5之后,volatile关键字才得以 ...

  9. Java并发编程(三)volatile域

    相关文章 Java并发编程(一)线程定义.状态和属性 Java并发编程(二)同步 Android多线程(一)线程池 Android多线程(二)AsyncTask源代码分析 前言 有时仅仅为了读写一个或 ...

随机推荐

  1. XML文件介绍

    xml基础详解 1.概述: xml:即可扩展标记语言,xml是互联网数据传输的重要工具,它可以跨越互联网的任何平台,不受编程语言和操作系统的限制,可以说他是一个拥有互联网最高级别通行证的数据携带者.x ...

  2. 剑指offer21:第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序。(注意:这两个序列的长度是相等的)

    1 题目描述 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是 ...

  3. php gd实现简单图片验证码与图片背景文字水印

    1.让水印文字铺满图片: 大致效果: 代码: <?php function appendSpreadTextMark($imageDir, $markText) { $fontFile = &q ...

  4. 怎样理解ECMAScript 和 JavaScript的关系

    JavaScript可以分为三大部分: 1. 核心语法 2. DOM 3. BOM 而核心语法实际上就是指的ECMAScript, 而JS又是不断在发展的, 而这个发展实际上最主要的就是ECMAScr ...

  5. C# Math.Round()的银行家算法

    可能很多人都跟我一样,都只知道Math.Round()是C#中用来做四舍五入,保留指定小数位的 但实际上它并不是真正的四舍五入,而是银行家算法的四舍六入五取偶 事实上这也是IEEE的规范,因此所有符合 ...

  6. c++11 用户定义字面量

    c++11 用户定义字面量 #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <string> #inc ...

  7. [转载]Java序列化与反序列化

    [转载]Java序列化与反序列化 来源: https://www.cnblogs.com/anitinaj/p/9253921.html 序列化和反序列化作为Java里一个较为基础的知识点,那你能说一 ...

  8. QT打开文件或文件夹或网络地址

    打开文件或文件夹 如果是文件或文件夹 必须带file:/// 后面可以是文件(夹)的绝对路径 QDesktopServices::openUrl(QUrl("file:///C:/Docum ...

  9. php实现拼图滑块验证的思考及部分实现

    实现拼图滑块验证,我觉得其中比较关键的一点就是裁剪图片,最起码需要裁剪出下面两张图的样子 底图 滑块图 一张底图和一张滑块图,其中底图实现起来比较简单可以使用添加水印的方式直接将一张拼图形状的半透明图 ...

  10. mybatis generator代码生成器的使用

    一.有关mybatis generator的使用可以查看如下网址:http://www.mybatis.org/generator/index.html 二.如下是我自己整理的学习步骤: <1& ...