ZOJ-2972-Hurdles of 110m(线性dp)
Hurdles of 110m
Time Limit: 2 Seconds Memory Limit: 65536 KB
In the year 2008, the 29th Olympic Games will be held in Beijing. This will signify the prosperity of China and Beijing Olympics is to be a festival for people all over the world as well.
Liu Xiang is one of the famous Olympic athletes in China. In 2002 Liu broke Renaldo Nehemiah's 24-year-old world junior record for the 110m hurdles. At the 2004 Athens Olympics Games, he won the gold medal in the end. Although he was not considered as a favorite for the gold, in the final, Liu's technique was nearly perfect as he barely touched the sixth hurdle and cleared all of the others cleanly. He powered to a victory of almost three meters. In doing so, he tied the 11-year-old world record of 12.91 seconds. Liu was the first Chinese man to win an Olympic gold medal in track and field. Only 21 years old at the time of his victory, Liu vowed to defend his title when the Olympics come to Beijing in 2008.

In the 110m hurdle competition, the track was divided into N parts by the hurdle. In each part, the player has to run in the same speed; otherwise he may hit the hurdle. In fact, there are 3 modes to choose in each part for an athlete -- Fast Mode, Normal Mode and Slow Mode. Fast Mode costs the player T1 time to pass the part. However, he cannot always use this mode in all parts, because he needs to consume F1 force at the same time. If he doesn't have enough force, he cannot run in the part at the Fast Mode. Normal Mode costs the player T2 time for the part. And at this mode, the player's force will remain unchanged. Slow Mode costs the player T3 time to pass the part. Meanwhile, the player will earn F2 force as compensation. The maximal force of a player is M. If he already has M force, he cannot earn any more force. At the beginning of the competition, the player has the maximal force.
The input of this problem is detail data for Liu Xiang. Your task is to help him to choose proper mode in each part to finish the competition in the shortest time.
Input
Standard input will contain multiple test cases. The first line of the input is a single integer T (1 <= T <= 50) which is the number of test cases. And it will be followed by T consecutive test cases.
Each test case begins with two positive integers N and M. And following N lines denote the data for the N parts. Each line has five positive integers T1 T2 T3 F1 F2. All the integers in this problem are less than or equal to 110.
Output
Results should be directed to standard output. The output of each test case should be a single integer in one line, which is the shortest time that Liu Xiang can finish the competition.
Sample Input
2
1 10
1 2 3 10 10
4 10
1 2 3 10 10
1 10 10 10 10
1 1 2 10 10
1 10 10 10 10
Sample Output
1
6
Hint
For the second sample test case, Liu Xiang should run with the sequence of Normal Mode, Fast Mode, Slow Mode and Fast Mode
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int t,n,m,ans;
int t1[],t2[],t3[],f1[],f2[];
int dp[][];//dp[i][j]表示第i个障碍,还剩j的能力时最短是时间
int main()
{
while(~scanf("%d",&t))
{
for(;t>;t--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d%d%d%d%d",&t1[i],&t2[i],&t3[i],&f1[i],&f2[i]);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
dp[i][j]=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
/*
dp[i][j]=dp[i-1][j]+t2[i];
if (j+f1[i]<=m) dp[i][j]=min(dp[i][j],dp[i-1][j+f1[i]]+t1[i]);
if(j>=f2[i]) dp[i][j]=min(dp[i][j],dp[i-1][j-f2[i]]+t3[i]);
//想了半天,突然想到,这样写,让选用三方案后能量超过m的情况被忽略了。
*/
dp[i][j]=min(dp[i][j],dp[i-][j]+t2[i]);
if (j>=f1[i]) dp[i][j-f1[i]]=min(dp[i][j-f1[i]],dp[i-][j]+t1[i]);
dp[i][min(j+f2[i],m)]=min(dp[i][min(j+f2[i],m)],dp[i-][j]+t3[i]);
}
/* for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++)
printf("%d ",dp[i][j]);
printf("\n");
}*/
ans=;
for(int i=;i<=m;i++)
ans=min(ans,dp[n][i]);
printf("%d\n",ans);
}
}
return ;
}
ZOJ-2972-Hurdles of 110m(线性dp)的更多相关文章
- ZOJ 2972 Hurdles of 110m 【DP 背包】
一共有N段过程,每段过程里可以选择 快速跑. 匀速跑 和 慢速跑 对于快速跑会消耗F1 的能量, 慢速跑会集聚F2的能量 选手一开始有M的能量,即能量上限 求通过全程的最短时间 定义DP[i][j] ...
- zoj 2972 - Hurdles of 110m
题目:110米栏,运动员能够用三种状态跑,1状态耗体力且跑得快,2状态不消耗体力,3状态恢复体力且跑得慢. 体力上限是M,且初始满体力,如今想知到最小的时间跑全然程. 分析:dp,全然背包.题目是一个 ...
- zju 2972 Hurdles of 110m(简单的dp)
题目 简单的dp,但是我还是参考了网上的思路,具体我没考虑到的地方见代码 #include<stdio.h> #include<iostream> #include<st ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
随机推荐
- NGUI制作 《九宫格》 图片
什么是九宫格图片? 就是一张图片的上下左右四个角是固定的,无论X/Y被拉伸多大,图片都不会失真 效果图 ------> 那在NGUI里面怎么做到呢 1 首先你要把图片添加到NGUI图集里,点击E ...
- Linux下修改时间
修改linux的时间可以使用date指令 date命令的功能是显示和设置系统日期和时间. 输入date 查看目前系统时间. 修改时间需要 date -功能字符 修改内容 命令中各选项的含义分别为: - ...
- ThinkPHP 调用后台方法
<a href="__URL__/del/id/{$vo['id']}">删除</a>
- centos7 安装 gitolite (git服务器)
gitolite简介 轻量级git服务器程序,解决了git权限管理的问题.(git是一个分布式版本控制系统,就是说每个人作为客户端的同时又是服务器)项目GitHub地址:https://github. ...
- CSS Float(浮动)
CSS Float(浮动) 一.CSS Float(浮动) CSS 的 Float(浮动),会使元素向左或向右移动,其周围的元素也会重新排列. Float(浮动),往往是用于图像,但它在布局时一样非常 ...
- Java基础东西(按位操作运算)
http://aokunsang.iteye.com/blog/615658 前奏: 昨天一哥们问我Java位移你会吗,我说不会,想想位移这么麻烦,一般有位移的Java代码一律不看,有几个人会啊, ...
- LabVIEW之Vision基础 (一)之软件
一.软件准备 NI LabVIEW软件视觉开发必备软件 1.开发平台:LabVIEW 2015Chinese 32位中文版 链接:http://pan.baidu.com/s/1eRGmFVc 2.N ...
- Jenkins FreeStyle or Pipeline Job
FreeStyle Job: 1. 需要在页面添加模块配置项与参数完成配置 2. 每个Job仅能实现一个开发功能 3. 无法将配置代码化,不利于Job配置迁移与版本控制 4. 逻辑相对简单,无额外学习 ...
- 从零开始玩转JMX(四)——Apache Commons Modeler & Dynamic MBean
Apache Commons Modeler 前面的Model MBean的创建方式看上去特别复杂,一个简单功能的类ModelMBeanUtils 写了很多代码,那有木有简单点的方式呢,答案是肯定的, ...
- 【Semantic segmentation】Fully Convolutional Networks for Semantic Segmentation 论文解析
目录 0. 论文链接 1. 概述 2. Adapting classifiers for dense prediction 3. upsampling 3.1 Shift-and-stitch 3.2 ...