【BZOJ2726】[SDOI2012]任务安排

Description

机器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3...N。这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

Input

第一行两个整数,N,S。
接下来N行每行两个整数,Ti,Fi。

Output

一个整数,为所求的答案。

Sample Input

5 1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

题解:用f[i]表示做完前i个任务的最小费用,但是做完当前任务的时间对后面的任务也会造成影响,所以我们提前应计算费用,不难列出方程:

设st表示T的前缀和,sf表示F的前缀和,所以有:

$f[i]=\min \{ f[j]+(st[i]-st[j]+S)*(sf[n]-sf[j])\}$

移个项显然就变成了斜率优化的形式。不过坑的地方是,T可能是负数,所以斜率不是单调的,所以用cdq分治即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=300010;
typedef long long ll;
typedef long double ld;
int n;
ll S;
struct node
{
int x,org,k;
ll y,f;
}s[maxn],p[maxn];
int q[maxn];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
bool cmpk(const node &a,const node &b)
{
return a.k>b.k;
}
bool cmpo(const node &a,const node &b)
{
return a.org<b.org;
}
inline ld slope(int a,int b)
{
if(s[a].x==s[b].x) return (s[b].y>=s[a].y)?(1e20):(-1e20);
else return ld(s[b].y-s[a].y)/(s[b].x-s[a].x);
}
void solve(int l,int r)
{
if(l==r)
{
s[l].y=(ll)s[l].x*(s[l].k-S)-s[l].f;
return ;
}
register int mid=(l+r)>>1,i,h1=l,h2=mid+1;
for(i=l;i<=r;i++)
{
if(s[i].org<=mid) p[h1++]=s[i];
else p[h2++]=s[i];
}
for(i=l;i<=r;i++) s[i]=p[i];
solve(l,mid);
register int h=1,t=0;
for(i=l;i<=mid;i++)
{
while(h<t&&slope(q[t],i)>=slope(q[t-1],q[t])) t--;
q[++t]=i;
}
for(i=mid+1;i<=r;i++)
{
while(h<t&&slope(q[h],q[h+1])>=s[i].k) h++;
s[i].f=min(s[i].f,s[q[h]].f+s[q[h]].x*(s[i].k-s[q[h]].k+S));
}
solve(mid+1,r);
h1=l,h2=mid+1;
for(i=l;i<=r;i++)
{
if(h1<=mid&&(h2>r||s[h1].x<s[h2].x)) p[i]=s[h1++];
else p[i]=s[h2++];
}
for(i=l;i<=r;i++) s[i]=p[i];
}
int main()
{
n=rd(),S=rd();
int i;
for(i=1;i<=n;i++) s[i].k=s[i-1].k+rd(),s[i-1].x=rd(),s[i].org=i;
for(i=n-1;i>=0;i--) s[i].x+=s[i+1].x;
for(i=1;i<=n;i++) s[i].f=s[0].x*(s[i].k+S);
sort(s+1,s+n+1,cmpk);
solve(1,n);
sort(s+1,s+n+1,cmpo);
printf("%lld",s[n].f);
return 0;
}

【BZOJ2726】[SDOI2012]任务安排 斜率优化+cdq分治的更多相关文章

  1. [bzoj2726][SDOI2012]任务安排 ——斜率优化,动态规划,二分,代价提前计算

    题解 本题的状态很容易设计: f[i] 为到第i个物件的最小代价. 但是方程不容易设计,因为有"后效性" 有两种方法解决: 1)倒过来设计动态规划,典型的,可以设计这样的方程: d ...

  2. BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治

    BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治 Description 你是任意性复杂机器公司(Arbitrarily Complex Machines, ACM) ...

  3. BZOJ2726 [SDOI2012]任务安排 【斜率优化 + cdq分治】

    题目 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i ...

  4. [Noi2014]购票 BZOJ3672 点分治+斜率优化+CDQ分治

    Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的 ...

  5. 【BZOJ-1492】货币兑换Cash DP + 斜率优化 + CDQ分治

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 3396  Solved: 1434[Submit][Sta ...

  6. 洛谷.4655.[CEOI2017]Building Bridges(DP 斜率优化 CDQ分治)

    LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_ ...

  7. BZOJ3963 WF2011MachineWorks(动态规划+斜率优化+cdq分治)

    按卖出时间排序后,设f[i]为买下第i台机器后的当前最大收益,则显然有f[i]=max{f[j]+gj*(di-dj-1)+rj-pi},且若此值<0,应设为-inf以表示无法购买第i台机器. ...

  8. bzoj1492/luogu4027 货币兑换 (斜率优化+cdq分治)

    设f[i]是第i天能获得的最大钱数,那么 f[i]=max{在第j天用f[j]的钱买,然后在第i天卖得到的钱,f[i-1]} 然后解一解方程什么的,设$x[j]=\frac{F[j]}{A[j]*Ra ...

  9. BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]

    2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 868  Solved: 236[Submit][Status ...

随机推荐

  1. sql server数据库查询超时报错

    报错信息如下: 链接服务器"DBJointFrame"的 OLE DB 访问接口 "SQLNCLI10" 返回了消息 "查询超时已过期". ...

  2. 让HttpClient不要打印巨多的日志

    让HttpClient不要打印巨多的日志 log4j.logger.org.apache.commons.httpclient=DEBUG 參考http://hc.apache.org/httpcli ...

  3. cocos2d-x与ISO内存管理(转)

    一,IOS与图片内存 在IOS上,图片会被自动缩放到2的N次方大小.比如一张1024*1025的图片,占用的内存与一张1024*2048的图片是一致的.图片占用内存大小的计算的公式是:长*宽*4.这样 ...

  4. swift 属性和方法

    属性和常量 如果创建了一个结构体的实例并赋值给一个常量,则无法修改实例的任何属性: let rangeOfFourItems = FixedLengthRange(firstValue: 0, len ...

  5. MySQL编码问题集合

    1.以root用户的身份登录,查看编码设置 mysql> SHOW VARIABLES LIKE 'character%'; +--------------------------+------ ...

  6. 常见编码和编码头BOM

    ANSI(American National Standards Institute,美国国家标准学会)ANSI编码标准是指所有从基本ASCII码基础上发展起来的编码标准,比如扩展的ASCII码(12 ...

  7. 时间同步linux和window

    windows和linux都可以通过ntp服务,同步时间.

  8. 用log4j将日志写入数据库

    以下为log4j中的配置参数: %m 输出代码中指定的消息 %p 输出优先级,即DEBUG,INFO,WARN,ERROR,FATAL %r 输出自应用启动到输出该log信息耗费的毫秒数 %t 输出产 ...

  9. androidStudio简便安装

    最近在公司由eclipse换为androidstudio,说句实话,androidstudio还是蛮好用的,但是自己刚刚安装的时候遇到很多的问题,问了度娘,各种说法都有,还是捣鼓不得,于是自己尝试,弄 ...

  10. 利用|,&amp;,^,~,&lt;&lt;,&gt;&gt;&gt;写出高效艺术的代码

    简单介绍: 大家在阅读源代码的时候常常会看到一些比方以下这样特别难理解的代码. cancelEvent.setAction(MotionEvent.ACTION_CANCEL | (motionEve ...