【20181027T1】洛阳怀【推结论+线性筛+分解质因数+GCD性质】
【错解】
唔,先打个表看看
咦,没有坏质数好像就是质因数个数啊
那有坏质数呢?
好像变负数了
推出错误结论:f(x)=x的质因数个数,如果有个坏质数,就乘上-1
然后乱搞,起码花了2个小时
【正解】
用脚趾头想一想都知道怎么可能长这样的?
如果最小质因数是坏的,就去掉-1;否则去掉+1
即好质因数-坏质因数
开个bitset记坏质数,然后先筛一下,计算的时候分解\(\sqrt{1e9}\)质因数就好
对于GCD:因为g[i]%g[i+1]==0,所以后面的操作对前面没有影响
所以预处理前缀GCD,然后从后往前算f,如果<0就除一下
另外:分解质因数应先筛出质数,然后枚举\(\sqrt{X}\)内的质数,一个个分解,最后如果X不为1再把自己加上
复杂度\(O(\sqrt{max(A_i)}+\frac{N\sqrt{N}}{log \sqrt{N}})\)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <bitset>
#define MAXN 2005
#define MAX 1000000
using namespace std;
typedef long long ll;
bitset<1000000005> S;
inline int read()
{
int ans=0,f=1;
char c=getchar();
while (!isdigit(c))
{
if (c=='-') f=-1;
c=getchar();
}
while (isdigit(c))
ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return f*ans;
}
int n,m;
bool np[MAX+5];
int pl[MAX+5],cnt;
void init()
{
np[1]=1;
for (int i=2;i<=MAX;i++)
{
if (!np[i])
pl[++cnt]=i;
for (int j=1;j<=cnt&&i*pl[j]<=MAX;j++)
{
np[i*pl[j]]=1;
if (i%pl[j]==0) break;
}
}
}
int calc(int x)
{
if (x==1) return 0;
int ans=0;
bool flag=false;
for (int i=1;i<=cnt&&pl[i]*pl[i]<=x;i++)
while (x%pl[i]==0)
{
ans+=(S[pl[i]]? -1:1);
x/=pl[i];
}
if(x!=1)ans+=(S[x]? -1:1);
return ans;
}
int a[MAXN],b[MAXN];
int gcd(int a,int b)
{
return b? gcd(b,a%b):a;
}
int g[MAXN];
int main()
{
n=read(),m=read();
for (int i=1;i<=n;i++) a[i]=read();
for (int i=1;i<=m;i++) S[read()]=1;
init();
for (int i=1;i<=n;i++) g[i]=gcd(g[i-1],a[i]);
ll ans=0;
for (int i=1;i<=n;i++) ans+=calc(a[i]);
int lazy=1;
for (int i=n;i>=1;i--)
{
g[i]/=lazy;
int t=calc(g[i]);
if (t<0)
{
ans-=(ll)t*i;
lazy*=g[i];
}
}
cout<<ans;
return 0;
}
【20181027T1】洛阳怀【推结论+线性筛+分解质因数+GCD性质】的更多相关文章
- Codeforces 893E Counting Arrays:dp + 线性筛 + 分解质因数 + 组合数结论
题目链接:http://codeforces.com/problemset/problem/893/E 题意: 共q组数据(q <= 10^5),每组数据给定x,y(x,y <= 10^6 ...
- Gym 101981J - Prime Game - [数学题][线性筛+分解质因数][2018-2019 ACM-ICPC Asia Nanjing Regional Contest Problem J]
题目链接:http://codeforces.com/gym/101981/attachments 题意: 令 $mul(l,r) = \prod_{i=l}^{r}a_i$,且 $fac(l,r)$ ...
- 【数论】【枚举】【莫比乌斯反演】【线性筛】bzoj2818 Gcd
思路是hdu6134的简化版,只需要在外面套上一个枚举素数就行了. http://www.cnblogs.com/autsky-jadek/p/7491730.html #include<cst ...
- 欧拉筛,线性筛,洛谷P2158仪仗队
题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...
- 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 726 Solved: 309[Submit][Status ...
- BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...
- luogu 3708 koishi的数学题 递推 线性筛
题目链接 题意 输入一个整数\(n\)\((n\leq 1e6)\),设\(f(x)=\sum_{i=1}^n x\mod i\),你需要输出\(f(1),f(2)...,f(n)\). 输入输出格式 ...
- * SPOJ PGCD Primes in GCD Table (需要自己推线性筛函数,好题)
题目大意: 给定n,m,求有多少组(a,b) 0<a<=n , 0<b<=m , 使得gcd(a,b)= p , p是一个素数 这里本来利用枚举一个个素数,然后利用莫比乌斯反演 ...
- 济南学习D3T1__线性筛和阶乘质因数分解
[问题描述] 从1− N中找一些数乘起来使得答案是一个完全平方数,求这个完全平方数最大可能是多少. [输入格式] 第一行一个数字N. [输出格式] 一行,一个整数代表答案对100000007取模之后的 ...
随机推荐
- 【leetcode 简单】第十七题 x 的平方根
实现 int sqrt(int x) 函数. 计算并返回 x 的平方根,其中 x 是非负整数. 由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去. 示例 1: 输入: 4 输出: 2 示例 ...
- 大聊PYthon----生成器
再说迭代器与生成器之前,先说一说列表生成式 列表生成式 什么是列表生成式呢? 这个非常简单! 先看看普通青年版的! >>> a [0, 1, 2, 3, 4, 5, 6, 7, 8, ...
- 33、re的match和search区别?
1.match()函数只检测RE是不是在string的开始位置匹配,search()会扫描整个string查找匹配:2.也就是说match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功 ...
- 爬行百度标题&URL案例
思路: 先将需要获取的匹配出,然后可以用"永真"(即while True:)来遍历使得URL可以一直自增变化(百度点击下一页URL的pn参数就增加10)每增加10就爬行一遍URL然 ...
- appium===浮窗无法定位的解决办法
这个问题比较常见,而且不被重视.大多数人的解决思路是根据坐标,把它点掉. 如下图,根本无法定位出“你好”这个元素: 最后的解决办法是: 在desired_caps={}中增加, desired_cap ...
- dev_alloc_skb(len+16) skb_reserve(skb,2) skb_put(skb,len)
/** * dev_alloc_skb - allocate an skbuff for receiving * @length: length to allocate * * ...
- 华东师范大学第十届ECNU Coder程序设计竞赛
华东师范大学第十届ECNU Coder程序设计竞赛 浮点数模运算 solution 转成整数然后取模. 时间复杂度:\(O(1)\) 数螃蟹 solution 找出公差出现次数最多的作为公差,然后找出 ...
- ps的各种参数
1.CPU占用最多的前10个进程: ps auxw|head -1;ps auxw|sort -rn -k3|head -10 2.内存消耗最多的前10个进程 ps auxw|head -1;ps a ...
- Ubuntu 下查看已安装的软件
Ubuntu 下如何查看已安装的软件 1.查看安装的所有软件 dpkg -l 例如: dpkg -l | grep ftp 2.查看软件安装的路径 dpkg -L | grep ftp 也可以用 wh ...
- geoip 扩展包根据ip定位详情
教程:https://laravel-china.org/courses/laravel-package/2024/get-the-corresponding-geo-location-informa ...