原题:CF402D

【错解】

唔,先打个表看看

咦,没有坏质数好像就是质因数个数啊

那有坏质数呢?

好像变负数了

推出错误结论:f(x)=x的质因数个数,如果有个坏质数,就乘上-1

然后乱搞,起码花了2个小时

【正解】

用脚趾头想一想都知道怎么可能长这样的?

如果最小质因数是坏的,就去掉-1;否则去掉+1

即好质因数-坏质因数

开个bitset记坏质数,然后先筛一下,计算的时候分解\(\sqrt{1e9}\)质因数就好

对于GCD:因为g[i]%g[i+1]==0,所以后面的操作对前面没有影响

所以预处理前缀GCD,然后从后往前算f,如果<0就除一下

另外:分解质因数应先筛出质数,然后枚举\(\sqrt{X}\)内的质数,一个个分解,最后如果X不为1再把自己加上

复杂度\(O(\sqrt{max(A_i)}+\frac{N\sqrt{N}}{log \sqrt{N}})\)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <bitset>
#define MAXN 2005
#define MAX 1000000
using namespace std;
typedef long long ll;
bitset<1000000005> S;
inline int read()
{
int ans=0,f=1;
char c=getchar();
while (!isdigit(c))
{
if (c=='-') f=-1;
c=getchar();
}
while (isdigit(c))
ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return f*ans;
}
int n,m;
bool np[MAX+5];
int pl[MAX+5],cnt;
void init()
{
np[1]=1;
for (int i=2;i<=MAX;i++)
{
if (!np[i])
pl[++cnt]=i;
for (int j=1;j<=cnt&&i*pl[j]<=MAX;j++)
{
np[i*pl[j]]=1;
if (i%pl[j]==0) break;
}
}
}
int calc(int x)
{
if (x==1) return 0;
int ans=0;
bool flag=false;
for (int i=1;i<=cnt&&pl[i]*pl[i]<=x;i++)
while (x%pl[i]==0)
{
ans+=(S[pl[i]]? -1:1);
x/=pl[i];
}
if(x!=1)ans+=(S[x]? -1:1);
return ans;
}
int a[MAXN],b[MAXN];
int gcd(int a,int b)
{
return b? gcd(b,a%b):a;
}
int g[MAXN];
int main()
{
n=read(),m=read();
for (int i=1;i<=n;i++) a[i]=read();
for (int i=1;i<=m;i++) S[read()]=1;
init();
for (int i=1;i<=n;i++) g[i]=gcd(g[i-1],a[i]);
ll ans=0;
for (int i=1;i<=n;i++) ans+=calc(a[i]);
int lazy=1;
for (int i=n;i>=1;i--)
{
g[i]/=lazy;
int t=calc(g[i]);
if (t<0)
{
ans-=(ll)t*i;
lazy*=g[i];
}
}
cout<<ans;
return 0;
}

【20181027T1】洛阳怀【推结论+线性筛+分解质因数+GCD性质】的更多相关文章

  1. Codeforces 893E Counting Arrays:dp + 线性筛 + 分解质因数 + 组合数结论

    题目链接:http://codeforces.com/problemset/problem/893/E 题意: 共q组数据(q <= 10^5),每组数据给定x,y(x,y <= 10^6 ...

  2. Gym 101981J - Prime Game - [数学题][线性筛+分解质因数][2018-2019 ACM-ICPC Asia Nanjing Regional Contest Problem J]

    题目链接:http://codeforces.com/gym/101981/attachments 题意: 令 $mul(l,r) = \prod_{i=l}^{r}a_i$,且 $fac(l,r)$ ...

  3. 【数论】【枚举】【莫比乌斯反演】【线性筛】bzoj2818 Gcd

    思路是hdu6134的简化版,只需要在外面套上一个枚举素数就行了. http://www.cnblogs.com/autsky-jadek/p/7491730.html #include<cst ...

  4. 欧拉筛,线性筛,洛谷P2158仪仗队

    题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...

  5. 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 726  Solved: 309[Submit][Status ...

  6. BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...

  7. luogu 3708 koishi的数学题 递推 线性筛

    题目链接 题意 输入一个整数\(n\)\((n\leq 1e6)\),设\(f(x)=\sum_{i=1}^n x\mod i\),你需要输出\(f(1),f(2)...,f(n)\). 输入输出格式 ...

  8. * SPOJ PGCD Primes in GCD Table (需要自己推线性筛函数,好题)

    题目大意: 给定n,m,求有多少组(a,b) 0<a<=n , 0<b<=m , 使得gcd(a,b)= p , p是一个素数 这里本来利用枚举一个个素数,然后利用莫比乌斯反演 ...

  9. 济南学习D3T1__线性筛和阶乘质因数分解

    [问题描述] 从1− N中找一些数乘起来使得答案是一个完全平方数,求这个完全平方数最大可能是多少. [输入格式] 第一行一个数字N. [输出格式] 一行,一个整数代表答案对100000007取模之后的 ...

随机推荐

  1. [POI 2008&洛谷P3467]PLA-Postering 题解(单调栈)

    [POI 2008&洛谷P3467]PLA-Postering Description Byteburg市东边的建筑都是以旧结构形式建造的:建筑互相紧挨着,之间没有空间.它们共同形成了一条长长 ...

  2. 深入理解Spring系列之十二:@Transactional是如何工作的

    转载 https://mp.weixin.qq.com/s/ZwhkUQF1Nun9pNrFI-3a6w 首先从说起.配置了,就必定有对应的标签解析器类,查看NamespaceHandler接口的实现 ...

  3. Linux SCIM/fcitx/ibus 输入法

    现在很多发行版linux一般都是装好scim scim-tables-zh 重启就行 但有时重启后还是不能调用 可以用如下方法: 添加文件: sudo gedit /etc/X11/xinit/xin ...

  4. vsftpd 安装配置详细教程

    linux下ftp软件不少,大致特点:<br /> wu-ftp:比较老牌,但针对它的攻击比较多,设置比较麻烦,但功能比较强大.<br /> vsftpd:功能强大,配置也比较 ...

  5. Linux内核中的队列 kfifo【转】

    转自:http://airekans.github.io/c/2015/10/12/linux-kernel-data-structure-kfifo#api 在内核中经常会有需要用到队列来传递数据的 ...

  6. appium===浮窗无法定位的解决办法

    这个问题比较常见,而且不被重视.大多数人的解决思路是根据坐标,把它点掉. 如下图,根本无法定位出“你好”这个元素: 最后的解决办法是: 在desired_caps={}中增加, desired_cap ...

  7. 修改 firefox accesskey 的快捷键

    Chrome中,如果设置了 accesskey 的话,可以通过 Alt + 快捷键 来之直接跳转的.但在Firefox 中,可能是为了防止于菜单的快捷键冲突,所以设置了 Shift + Alt + 快 ...

  8. The hub and spoke model 轮辐模型/辐射模型

    最近一些文档中提到The Hub and Spoke Model,这里mark一下.hub表示轮毂,spoke表示轮辐,轮辐模型是简化网络路由的一套中心化的体系,广泛应用于航空.货运.快递以及网络技术 ...

  9. 解决uc浏览器不支持vw单位的方法

    插入下段代码,使用rem来代替vw <script type="text/javascript"> (function (doc, win) { var docEl = ...

  10. MySQL-事务特性

    1. 事务概念引入: 现实生活中,我们往往经常会进行转账操作,转账操作可以分为两部分来完成,转入和转出.只有这两部分都完成了才可以认为是转账成功.在数据库中,这个过程是使用两条语句来完成的,如果其中任 ...