NOIP200606金明的预算方案
试题描述:
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)。请你帮助金明设计一个满足要求的购物单。
输入:第1行,为两个正整数,用一个空格隔开:n m
(其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)
从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数v p q
(其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)
输出:只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。
输入示例:
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出示例:
2200
解题思路:
还是DP
- #include <iostream>
- #include <cstdio>
- #include <cstring>
- #include <algorithm>
- using namespace std;
- int dp[],p[],v[],p1[],v1[],p2[],v2[];
- int ans;
- int main()
- {
- int n,m;
- cin>>m>>n;
- m/=;
- for(int i=;i<=n;i++)
- {
- int a,b,c;
- cin>>a>>b>>c;
- a/=;
- if(c!=)
- {
- if(p1[c]==)
- {
- p1[c]=a;
- v1[c]=b;
- }
- else
- {
- p2[c]=a;
- v2[c]=b;
- }
- }
- else
- {
- p[i]=a;
- v[i]=b;
- }
- }
- for(int i=;i<=n;i++)
- for(int j=m;j>=p[i];j--)
- {
- dp[j]=max(dp[j],dp[j-p[i]]+v[i]*p[i]);
- if(j-p[i]-p1[i]>=) dp[j]=max(dp[j],dp[j-p[i]-p1[i]]+v[i]*p[i]+v1[i]*p1[i]);
- if(j-p[i]-p2[i]>=) dp[j]=max(dp[j],dp[j-p[i]-p2[i]]+v[i]*p[i]+v2[i]*p2[i]);
- if(j-p[i]-p1[i]-p2[i]>=) dp[j]=max(dp[j],dp[j-p[i]-p1[i]-p2[i]]+v[i]*p[i]+v1[i]*p1[i]+v2[i]*p2[i]);
- ans=max(ans,dp[j]);
- }
- cout<<ans*;
- // system("pause");
- }
- //1000 +1200 +1500+2000+1600
NOIP200606金明的预算方案的更多相关文章
- [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案
[codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案 试题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴 ...
- NOIP2006 金明的预算方案
1. 金明的预算方案 (budget.pas/c/cpp) [问题描述] 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈 ...
- 动态规划(背包问题):HRBUST 1377 金明的预算方案
金明的预算方案 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行 ...
- Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划)
Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己 ...
- [LuoguP1064][Noip2006]金明的预算方案
金明的预算方案(Link) 题目描述 现在有\(M\)个物品,每一个物品有一个钱数和重要度,并且有一个\(Q\),如果\(Q = 0\),那么该物件可以单独购买,当\(Q != 0\)时,表示若要购买 ...
- 算法笔记_103:蓝桥杯练习 算法提高 金明的预算方案(Java)
目录 1 问题描述 2 解决方案 1 问题描述 问题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些 ...
- tyvj 1057 金明的预算方案 背包dp
P1057 金明的预算方案 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 NOIP2006 提高组 第二道 描述 金明今天很开心,家里购置的新房就要领钥匙了 ...
- 【洛谷P1064】[NOIP2006] 金明的预算方案
金明的预算方案 显然是个背包问题 把每个主件和它对应的附件放在一组,枚举每一组,有以下几种选法: 1.都不选 2.只选主件 3.一个主件+一个附件 4.一个主件+两个附件 于是就成了01背包.. #i ...
- 「NOIP2006」「LuoguP1064」 金明的预算方案(分组背包
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NNN元钱就行” ...
随机推荐
- $.when()方法翻译2
mac不知道为何,文章字数一多,浏览器就重启.只好分开写了. In the event a Deferred was resolved with no value, the corresponding ...
- notepad++突然崩溃,保存的文件没了怎么办
在C:\Users\你当前用户的用户名\AppData\Roaming\Notepad++\backup 有备份
- ogg使用语句
create tablespace ogg datafile '/oracle/oradata/DRMT/ogg01.dbf' size 50M autoextend on; edit params ...
- 2. 数据库文件配置与简单操作 Model / M()
官方文档说明位置: Thinkphp/Conf/convention.php 内容说明如下: 'DB_TYPE' => '', // 数据库类型 'DB_HOST' => '', // 服 ...
- [ python ] 集合的使用
集合的使用 可变数据类型,他里面的元素必须是不可变的数据类型,无序,不重复. 集合的增删查 集合是没有改这种说法的: (1)集合的元素无序的: (2)集合的元素为不可变类型 增加 add 为集 ...
- AGC 16 D - XOR Replace
AGC 16 D - XOR Replace 附上attack(自为风月马前卒爷) 的题解 Problem Statement There is a sequence of length N: a=( ...
- php强制输出到浏览器下载
$file_name="test.mp3"; $mp3_url = "";header( "Pragma: public" );header ...
- [置顶]
人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...
- Linux 用户篇——用户管理命令之id、whoami、su、chage
一.浅谈id.whoami.su.chage 本篇是续写上一篇<Linux 用户篇——用户管理命令之useradd.passwd.userdel.usermod>. (1)id命令 命令格 ...
- ueditor 编辑器上传到服务器后图片上传不能正常使用
网站集成ueditor编辑器后在本地能正常使用,上传到服务器上后,图片上传功能提示:后端配置项没有正常加载,上传插件不能正常使用.且单个图片上传图标是灰色的不能点击. 相信遇到这个问题的同学是很多的吧 ...