参考资料

GAN原理学习笔记

生成式对抗网络GAN汇总

GAN的理解与TensorFlow的实现

TensorFlow小试牛刀(2):GAN生成手写数字

参考代码之一

#coding=utf-8
#http://blog.csdn.net/u012223913/article/details/75051516?locationNum=1&fps=1
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
from tensorflow.examples.tutorials.mnist import input_data sess = tf.InteractiveSession() mb_size = 128
Z_dim = 100 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def weight_var(shape, name):
return tf.get_variable(name=name, shape=shape, initializer=tf.contrib.layers.xavier_initializer()) def bias_var(shape, name):
return tf.get_variable(name=name, shape=shape, initializer=tf.constant_initializer(0)) # discriminater net X = tf.placeholder(tf.float32, shape=[None, 784], name='X') # X [128 784] z1 = W * x + b
# 矩阵乘法 128 * 784 * 784 * 128 = [128 128]
D_W1 = weight_var([784, 128], 'D_W1')
D_b1 = bias_var([128], 'D_b1') #z2 = W * z1 + b
# 矩阵乘法 128 * 128 * 128 * 1 = [128 1] 输出判决结果,二分类
D_W2 = weight_var([128, 1], 'D_W2')
D_b2 = bias_var([1], 'D_b2'
)
theta_D = [D_W1, D_W2, D_b1, D_b2] # generator net Z = tf.placeholder(tf.float32, shape=[None, 100], name='Z') # z [128 784] z1 = W * x + b
# 矩阵乘法 128 * 100 * 100 * 128 = [128 128]
G_W1 = weight_var([100, 128], 'G_W1')
G_b1 = bias_var([128], 'G_B1') #z2 = W * z1 + b
# 矩阵乘法 128 * 128 * 128 * 784 = [128 784] 输出28*28的图像
G_W2 = weight_var([128, 784], 'G_W2')
G_b2 = bias_var([784], 'G_B2') theta_G = [G_W1, G_W2, G_b1, G_b2] def generator(z):
G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1)
G_log_prob = tf.matmul(G_h1, G_W2) + G_b2
G_prob = tf.nn.sigmoid(G_log_prob) return G_prob def discriminator(x):
D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1)
D_logit = tf.matmul(D_h1, D_W2) + D_b2
D_prob = tf.nn.sigmoid(D_logit)
return D_prob, D_logit G_sample = generator(Z)
D_real, D_logit_real = discriminator(X)
D_fake, D_logit_fake = discriminator(G_sample) #discriminator输出为1表示ground truth
#discriminator输出为0表示非ground truth
#对于生成网络希望两点:
#(2)希望D_real尽可能大,这样保证正确识别真正的样本
#(1)希望D_fake尽可能小,这样可以剔除假的生成样本
D_loss = -tf.reduce_mean(tf.log(D_real) + tf.log(1. - D_fake)) #对于判别网络, 希望D_fake尽可能大,这样可以迷惑生成网络,
G_loss = -tf.reduce_mean(tf.log(D_fake)) D_optimizer = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D)
G_optimizer = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G) init = tf.initialize_all_variables()
saver = tf.train.Saver()
# 启动默认图
sess = tf.Session()
# 初始化
sess.run(init) def sample_Z(m, n):
'''Uniform prior for G(Z)'''
return np.random.uniform(-1., 1., size=[m, n]) def plot(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05) for i, sample in enumerate(samples): # [i,samples[i]] imax=16
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r') return fig if not os.path.exists('out/'):
os.makedirs('out/') i = 0 for it in range(1000000):
if it % 1000 == 0:
samples = sess.run(G_sample, feed_dict={
Z: sample_Z(16, Z_dim)}) # 16*784
fig = plot(samples)
plt.savefig('out/{}.png'.format(str(i).zfill(3)), bbox_inches='tight')
i += 1
plt.close(fig) X_mb, _ = mnist.train.next_batch(mb_size)#ground truth _, D_loss_curr = sess.run([D_optimizer, D_loss], feed_dict={
X: X_mb, Z: sample_Z(mb_size, Z_dim)})
_, G_loss_curr = sess.run([G_optimizer, G_loss], feed_dict={
Z: sample_Z(mb_size, Z_dim)}) if it % 1000 == 0:
print('Iter: {}'.format(it))
print('D loss: {:.4}'.format(D_loss_curr))
print('G_loss: {:.4}'.format(G_loss_curr))
print()

参考代码之二

#http://blog.csdn.net/sparkexpert/article/details/70147409

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
#from skimage.io import imsave
import scipy
import os
import shutil img_height = 28
img_width = 28
img_size = img_height * img_width to_train = True
to_restore = False
output_path = "output" # 总迭代次数500
max_epoch = 500 h1_size = 150
h2_size = 300
z_size = 100
batch_size = 256 # generate (model 1)
def build_generator(z_prior):
w1 = tf.Variable(tf.truncated_normal([z_size, h1_size], stddev=0.1), name="g_w1", dtype=tf.float32)
b1 = tf.Variable(tf.zeros([h1_size]), name="g_b1", dtype=tf.float32)
h1 = tf.nn.relu(tf.matmul(z_prior, w1) + b1)
w2 = tf.Variable(tf.truncated_normal([h1_size, h2_size], stddev=0.1), name="g_w2", dtype=tf.float32)
b2 = tf.Variable(tf.zeros([h2_size]), name="g_b2", dtype=tf.float32)
h2 = tf.nn.relu(tf.matmul(h1, w2) + b2)
w3 = tf.Variable(tf.truncated_normal([h2_size, img_size], stddev=0.1), name="g_w3", dtype=tf.float32)
b3 = tf.Variable(tf.zeros([img_size]), name="g_b3", dtype=tf.float32)
h3 = tf.matmul(h2, w3) + b3
x_generate = tf.nn.tanh(h3)
g_params = [w1, b1, w2, b2, w3, b3]
return x_generate, g_params # discriminator (model 2)
def build_discriminator(x_data, x_generated, keep_prob):
# tf.concat
x_in = tf.concat([x_data, x_generated], 0)
w1 = tf.Variable(tf.truncated_normal([img_size, h2_size], stddev=0.1), name="d_w1", dtype=tf.float32)
b1 = tf.Variable(tf.zeros([h2_size]), name="d_b1", dtype=tf.float32)
h1 = tf.nn.dropout(tf.nn.relu(tf.matmul(x_in, w1) + b1), keep_prob)
w2 = tf.Variable(tf.truncated_normal([h2_size, h1_size], stddev=0.1), name="d_w2", dtype=tf.float32)
b2 = tf.Variable(tf.zeros([h1_size]), name="d_b2", dtype=tf.float32)
h2 = tf.nn.dropout(tf.nn.relu(tf.matmul(h1, w2) + b2), keep_prob)
w3 = tf.Variable(tf.truncated_normal([h1_size, 1], stddev=0.1), name="d_w3", dtype=tf.float32)
b3 = tf.Variable(tf.zeros([1]), name="d_b3", dtype=tf.float32)
h3 = tf.matmul(h2, w3) + b3
y_data = tf.nn.sigmoid(tf.slice(h3, [0, 0], [batch_size, -1], name=None))
y_generated = tf.nn.sigmoid(tf.slice(h3, [batch_size, 0], [-1, -1], name=None))
d_params = [w1, b1, w2, b2, w3, b3]
return y_data, y_generated, d_params #
def show_result(batch_res, fname, grid_size=(8, 8), grid_pad=5):
batch_res = 0.5 * batch_res.reshape((batch_res.shape[0], img_height, img_width)) + 0.5
img_h, img_w = batch_res.shape[1], batch_res.shape[2]
grid_h = img_h * grid_size[0] + grid_pad * (grid_size[0] - 1)
grid_w = img_w * grid_size[1] + grid_pad * (grid_size[1] - 1)
img_grid = np.zeros((grid_h, grid_w), dtype=np.uint8)
for i, res in enumerate(batch_res):
if i >= grid_size[0] * grid_size[1]:
break
img = (res) * 255
img = img.astype(np.uint8)
row = (i // grid_size[0]) * (img_h + grid_pad)
col = (i % grid_size[1]) * (img_w + grid_pad)
img_grid[row:row + img_h, col:col + img_w] = img
#imsave(fname, img_grid)
#img.save('output/num.jpg')
scipy.misc.imsave(fname, img_grid) def train():
# load data(mnist手写数据集)
mnist = input_data.read_data_sets('mnist_data', one_hot=True) x_data = tf.placeholder(tf.float32, [batch_size, img_size], name="x_data")
z_prior = tf.placeholder(tf.float32, [batch_size, z_size], name="z_prior")
keep_prob = tf.placeholder(tf.float32, name="keep_prob")
global_step = tf.Variable(0, name="global_step", trainable=False) # 创建生成模型
x_generated, g_params = build_generator(z_prior)
# 创建判别模型
y_data, y_generated, d_params = build_discriminator(x_data, x_generated, keep_prob) # 损失函数的设置
d_loss = - (tf.log(y_data) + tf.log(1 - y_generated))
g_loss = - tf.log(y_generated) optimizer = tf.train.AdamOptimizer(0.0001) # 两个模型的优化函数
d_trainer = optimizer.minimize(d_loss, var_list=d_params)
g_trainer = optimizer.minimize(g_loss, var_list=g_params) init = tf.initialize_all_variables() saver = tf.train.Saver()
# 启动默认图
sess = tf.Session()
# 初始化
sess.run(init) if to_restore:
chkpt_fname = tf.train.latest_checkpoint(output_path)
saver.restore(sess, chkpt_fname)
else:
if os.path.exists(output_path):
shutil.rmtree(output_path)
os.mkdir(output_path) z_sample_val = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32) steps = 60000 / batch_size
for i in range(sess.run(global_step), max_epoch):
for j in np.arange(steps):
# for j in range(steps):
print("epoch:%s, iter:%s" % (i, j))
# 每一步迭代,我们都会加载256个训练样本,然后执行一次train_step
x_value, _ = mnist.train.next_batch(batch_size)
x_value = 2 * x_value.astype(np.float32) - 1
z_value = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32)
# 执行生成
sess.run(d_trainer,
feed_dict={x_data: x_value, z_prior: z_value, keep_prob: np.sum(0.7).astype(np.float32)})
# 执行判别
if j % 1 == 0:
sess.run(g_trainer,
feed_dict={x_data: x_value, z_prior: z_value, keep_prob: np.sum(0.7).astype(np.float32)})
x_gen_val = sess.run(x_generated, feed_dict={z_prior: z_sample_val})
show_result(x_gen_val, "output/sample{0}.jpg".format(i))
z_random_sample_val = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32)
x_gen_val = sess.run(x_generated, feed_dict={z_prior: z_random_sample_val})
show_result(x_gen_val, "output/random_sample{0}.jpg".format(i))
sess.run(tf.assign(global_step, i + 1))
saver.save(sess, os.path.join(output_path, "model"), global_step=global_step) def test():
z_prior = tf.placeholder(tf.float32, [batch_size, z_size], name="z_prior")
x_generated, _ = build_generator(z_prior)
chkpt_fname = tf.train.latest_checkpoint(output_path) init = tf.initialize_all_variables()
sess = tf.Session()
saver = tf.train.Saver()
sess.run(init)
saver.restore(sess, chkpt_fname)
z_test_value = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32)
x_gen_val = sess.run(x_generated, feed_dict={z_prior: z_test_value})
show_result(x_gen_val, "output/test_result.jpg") if __name__ == '__main__':
if to_train:
train()
else:
test()

GAN 生成mnist数据的更多相关文章

  1. GAN生成式对抗网络(三)——mnist数据生成

    通过GAN生成式对抗网络,产生mnist数据 引入包,数据约定等 import numpy as np import matplotlib.pyplot as plt import input_dat ...

  2. 4.keras实现-->生成式深度学习之用变分自编码器VAE生成图像(mnist数据集和名人头像数据集)

    变分自编码器(VAE,variatinal autoencoder)   VS    生成式对抗网络(GAN,generative adversarial network) 两者不仅适用于图像,还可以 ...

  3. 深度学习之 GAN 进行 mnist 图片的生成

    深度学习之 GAN 进行 mnist 图片的生成 mport numpy as np import os import codecs import torch from PIL import Imag ...

  4. 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据

    1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...

  5. GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)

    我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...

  6. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  7. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  8. GAN生成的评价指标 Evaluation of GAN

    传统方法中,如何衡量一个generator ?-- 用 generator 产生数据的 likelihood,越大越好. 但是 GAN 中的 generator 是隐式建模,所以只能从 P_G 中采样 ...

  9. Enterprise Solution 生成实体数据访问接口与实现类型 Code Smith 6.5 模板文件下载

    数据库表定义为SalesOrder,用LLBL Gen Pro生成的实体定义是SalesOrderEntity,再用Code Smith生成的数据读写接口是ISalesOrderManager,最后是 ...

随机推荐

  1. SQL语法 之 表连接

    一.连接条件 连接查询中用来连接连个表的条件称为连接条件或连接谓词.其形式为: [<表1>].<列名1> <连接运算符> [<表2>].<列2&g ...

  2. win7无法启动telnet服务

    右键我的电脑 —> 管理 —>服务,找到服务telnet, 右键—>属性—>依赖关系 就可以看到其他服务的依赖关系,打开相关依赖的服务即可解决服务不能启动的情况

  3. Android系统源代码——所需工具

    一.概述 众所周知,Android移动操作系统是Google花费了很大的财力.物力及人力的前提下,推广到世界各个角落,以开放源代码的方式(当然也不是完全开放所有),使其在世界范围内迅速漫延开来,到目前 ...

  4. SIP(Session Initiation Protocol,会话初始协议)

    SIP(Session Initiation Protocol,会话初始协议)的开发目的是用来帮助提供跨越因特网的高级电话业务.因特网电话(IP电话)正在向一种正式的商业电话模式演进,SIP就是用来确 ...

  5. 基于swiper的移动端H5页面,丰富的动画效果

    概述 通过运用swiper插件,制作移动端上下整屏滑动的H5页面,用来宣传或者简单注册等,可以嵌套H5音乐或者视频. 详细 代码下载:http://www.demodashi.com/demo/119 ...

  6. 编程算法 - 翻转单词顺序 代码(C)

    翻转单词顺序 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 输入一个英文句子, 翻转句子中单词的顺序, 但单词内字符的顺序不变. 首先翻转(r ...

  7. OAuth2.0官方文档中文翻译

    http://page.renren.com/699032478/note/708597990 (一)背景知识 OAuth 2.0很可能是下一代的“用户验证和授权”标准,目前在国内还没有很靠谱的技术资 ...

  8. c# 操作Word总结

    在医疗管理系统中为保存患者的体检和治疗记录,方便以后的医生或其他人查看.当把数据保存到数据库中,需要新建很多的字段,而且操作很繁琐,于是想到网页的信息创建到一个word文本中,在显示的时,可以在线打开 ...

  9. Oracle忘记密码找回

    生活中,容易忘记Oracle数据库system用户的密码,怎么办呢,小生带你一步步重新登上Oracle ,及时你密码忘记了. 1.打开cmd窗口,输入 sqlplus / as sysdba 2.运行 ...

  10. checkboxlist 横向显示,自动换行

    属性RepeatDirection 设为Horizontal RepeatColumns设置一个数字,表示每行显示几项 如果不想让每行显示的项是固定的,那么把RepeatLayout属性置为Flow