51nod 1118 机器人走方格
收起
输入
第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000)
输出
输出走法的数量。
输入样例
2 3
输出样例
3
动态规划代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#define MAX 1000
#define DMAX 10000
#define MOD 1000000007
using namespace std;
typedef long long ll;
int m,n;
ll dp[MAX + ][MAX + ]; int main() {
scanf("%d%d",&m,&n);
dp[][] = ;
for(int i = ;i <= m;i ++) {
for(int j = ;j <= n;j ++) {
dp[i][j] += dp[i][j - ] + dp[i - ][j];
dp[i][j] %= MOD;
}
}
printf("%lld",dp[m][n]);
}
可以用组合数,因为在每个位置要么选择横着走,要么选择竖着走,我们发现横着跨越的边或者竖着跨越的边的数量是一定的,分别是n - 1和m - 1,所以我们只需要把横着跨越的位置选好,或者把竖着的选好,剩下的就是横着走的了。
1,1 1,2 1,3 1,4
2,1 2,2 2,3 2,4
3,1 3,2 3,3 3,4
如上,我们先把竖着跨越的选好,显然选m-1=2个,第一个选1,2->2,2吧,第二选2,4->3,4这样我们需要连接n-1=3条边,1,1->1,2,2->2,3,2,3->2,4,横的竖的只要有一个选好了,另一个就定下了,所以只需要计算其中一个选择有几种情况即可。总的需要走n+m-2步,即需要跨越这么多个格子的边界,具体把哪几步分配给横着(竖着)走,可以用组合数来完成,而这里数据大需要取模,组合数有分子分母,取模要用到逆元。
组合代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#define MAX 1000
#define DMAX 10000
#define MOD 1000000007
using namespace std;
typedef long long ll;
int m,n;
int exgcd(int a,int b,int &x,int &y) {
if(b == ) {
x = ,y = ;
return a;
}
int g = exgcd(b,a % b,y,x);
y -= a / b * x;
return g;
}
int c(int x,int y) {
ll ans = ;
int a,b;
for(int i = y;i > y - x;i --) {
ans = (ans * i) % MOD;
}
for(int i = ;i <= x;i ++) {
exgcd(i,MOD,a,b);
a = (a + MOD) % MOD;
ans = (ans * a) % MOD;
}
return ans;
}
int main() {
scanf("%d%d",&m,&n);
printf("%d",c(min(m - ,n - ),n + m - ));
}
可以用卢卡斯定理专门求组合数。
lucas代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#define MAX 1000000
#define DMAX 1000000
#define MOD 1000000007
using namespace std;
typedef long long ll;
int m,n;
ll pow_mod(ll a,ll b,ll p) {///quick_pow
ll ans = ;
while(b) {
if(b % ) ans = (ans * a) % p;
a = (a * a) % p;
b >>= ;
}
return ans;
}
ll c(ll a,ll b,ll p) {///c(b,a)
ll ans = ,temp = ;
for(int i = ;i < b;i ++) {
ans = (ans * (a - i)) % p;
temp = (temp * (b - i)) % p;
}
temp = pow_mod(temp,p - ,p);///变成逆元 费马定理
ans = (ans * temp) % p;
return ans;
}
ll lucas(ll a,ll b,ll p) {//main
ll ans = ;
while(a && b) {
ans = (ans * c(a % p,b % p,p)) % p;
a /= p;
b /= p;
}
return ans;
}
int main() {
scanf("%d%d",&m,&n);
printf("%d",lucas(n + m - ,n - ,MOD));
}
51nod 1118 机器人走方格的更多相关文章
- 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题
51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...
- (DP)51NOD 1118 机器人走方格
M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.( ...
- 51nod 1118 机器人走方格【dp】
M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. 收起 输入 第1行,2个数M,N,中间用空格隔开.( ...
- 51Nod 1118 机器人走方格--求逆元
(x/y) %mod =x*(y^(mod-2))%mod; 在算x,y的时候可以一直mod 来缩小 y^(mod-2)显然是个快速幂 #include <iostream> #inclu ...
- 51nod 1119 机器人走方格 V2
1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...
- 51nod 1120 机器人走方格V3
1120 机器人走方格 V3 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...
- 51Nod——N1118 机器人走方格
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1118 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 ...
- 51nod 1120 机器人走方格 V3 卡特兰数 lucas定理
N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 100 ...
- 51nod 1120 机器人走方格 V3
N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走. 并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法? 由于方法数量可能很大,只需要输出Mod 1 ...
随机推荐
- linux du命令的疑惑
起因是测试rsync传输数据.传输完成后,想看一下传输的文件是不是完整,所以检测了下源目录和目标目录的大小,竟然出现了巨大的差距: [root@w anaconda3]$ du -sh ./ .9G ...
- Centos7 安装Power Shell
Centos7 安装Power Shell 1 查看版本 # cat /etc/redhat-release CentOS Linux release 7.5.1804 (Core) 2 安装 # R ...
- 《Think in Java》(十一)持有对象
Java 中的持有对象就是容器啦,看完这一章粗略的了解了 Java 中的容器框架以及常用实现!但是容器框架中的接口以及实现类有好多,下午还得好好看看第 17 章--容器深入研究以及 Java 官方的文 ...
- spring mvc: log4j插件 log日志的输出
准备: log插件:log4j <!-- log日志插件 --> <!-- https://mvnrepository.com/artifact/log4j/log4j --> ...
- TestNG入门--安装和基本介绍
TestNG介绍 TestNG是Java中的一个测试框架, 类似于JUnit 和NUnit, 功能都差不多, 只是功能更加强大,使用也更方便 Java中已经有一个JUnit的测试框架了. Tes ...
- ItemsControl的ItemContainerStyle属性
ItemsControl:ListBox,ComboBox,TreeView ItemContainerStyle是用来设置每一个集合控件的Item的样式的属性(即设置每一个项的样式). 使用It ...
- [转]基于Visual Studio 2010 进行敏捷/Scrum模式开发
http://www.infoq.com/cn/articles/visual-studio-2010-agile-scrum-development 根据Forrester Research今年第二 ...
- Mysql5.7基于日志转为基于事务主从复制
将基于日志的复制变更为基于事务的复制 mysql版本要高于5.7.6 gtid_mode要设为off 处理步骤 详细步骤 1.查看主从mysql版本是否高于5.7.6 show variables l ...
- java和python互相调用
java和python互相调用 作者:xuaijun 日期:2017.1.1 python作为一种脚本语言,大量用于测试用例和测试代码的编写,尤其适用于交互式业务场景.实际应用中,很多网管系统 ...
- Highcharts 气泡图
Highcharts 气泡图 配置 chart 配置 配置 chart 的 type 为 'bubble' .chart.type 描述了图表类型.默认值为 "line". cha ...