LOJ2503 NOIP2014 解方程


LINK


题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大


看到是提高T3还是解方程就以为是神仙数学题

后来研究了一下高精之类的算法发现过不了多少分

后面佬说这题是hash

然后就雾


考虑对于一个式子f(x)=0肯定会满足f(x)%prime=0
所以我们直接多取几个相近的prime,减小冲突几率

然后我们只需要预处理每个系数对于每个prime的模数,然后判断一下就可以了

但是这样会TLE

又可以发现对于任意的f(x)%prime=0,等价于f(x%prime)%prime=0
所以对于每个质数直接枚举比它小的数进行检查就好了

然后就比较和谐了

中间出了一些比较玄学的错误导致交了很多个70分
不过问题不大


 #include<bits/stdc++.h>
using namespace std;
#define N 110
#define M 1000010
int prime[]={,,,,};
int pa[N][],n,m;
char c[M];
bool vis[M],ak[M][];
int check(int x,int id){
int pic=;
for(int i=n;i>=;i--)
pic=(pic*x%prime[id]+pa[i][id])%prime[id];
return pic;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%s",c);
int len=strlen(c),j=;
if(c[]=='-')j++;
for(;j<len;j++)for(int k=;k<;k++)
pa[i][k]=(pa[i][k]*+c[j]-'')%prime[k];
if(c[]=='-')for(int k=;k<;k++)pa[i][k]*=-;
}
int cnt=;
for(int j=;j<;j++)
for(int i=;i<prime[j];i++)
if(check(i,j)!=)ak[i][j]=;
for(int i=;i<=m;i++){
bool can=;
for(int j=;j<;j++)if(ak[i%prime[j]][j]){can=;break;}
if(can)vis[i]=,cnt++;
}
printf("%d\n",cnt);
for(int i=;i<=m;i++)if(vis[i])printf("%d\n",i);
return ;
}

LOJ2503 NOIP2014 解方程 【HASH】的更多相关文章

  1. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  2. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  3. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  4. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

  5. BZOJ3751 NOIP2014 解方程(Hash)

    题目链接  BZOJ3751 这道题的关键就是选取取模的质数. 我选了4个大概几万的质数,这样刚好不会T 然后统计答案的时候如果对于当前质数,产生了一个解. 那么对于那些对这个质数取模结果为这个数的数 ...

  6. [BZOJ3751][NOIP2014] 解方程

    Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个 ...

  7. NOIP 2014 D2T3 解方程 Hash大法好

    题目大意:给定高次方程an*x^n+...+a1*x^1+a0*x^0=0 求[1,m]区间内有多少个整数根 ai<=10^10000.m<=100W 懒得高精,考场上写的long dou ...

  8. NOIP2014解方程

    题目:求一个n次整系数方程在1-m内的整数解  n<=100 系数<=10000位 m<=100W 题解:最暴力的想法是枚举x,带入求值看是否为0. 这样涉及到高精度乘高精度,高精度 ...

  9. [BZOJ3751] [NOIP2014] 解方程 (数学)

    Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...

随机推荐

  1. 使用httpclient提交表单数据加号(+)会被自动替换成空格的坑

    坑的场景: 今天使用httpclient-4.5.3版本,发送如下报文: { "idNo": "7+6+0+2ce722a546b39463bd62817fe57f8&q ...

  2. 解决httpclient请求响应压缩文本乱码问题

    最近在调用京东的获取省份接口老是中文乱码,加了utf-8也没有用.最后在httpclient打的日志中有Content-Encoding:gzip信息,最后在请求header里加上: reqHeade ...

  3. 基于事件的 JavaScript 编程:异步与同

    JavaScript的优势之一是其如何处理异步代码.异步代码会被放入一个事件队列,等到所有其他代码执行后才进行,而不会阻塞线程.然而,对于初学者来说,书写异步代码可能会比较困难.而在这篇文章里,我将会 ...

  4. 关于 Token,你应该知道的十件事

    转自:http://ju.outofmemory.cn/entry/134189 原文是一篇很好的讲述 Token 在 Web 应用中使用的文章,而这是我和 Special 合作翻译的译文. 1. T ...

  5. [Eclipse]保存java文件时,自动删除不需要的包import

    1.修改设定:Window->Preferences 2.效果:                =>           

  6. [javascript]jQuery绑定事件方法:on()

    语法: $(selector).on(event,childSelector,data,function) on(event,childSelector,data,function):在被选元素及子元 ...

  7. phalcon: 解决php7/phalcon3.2以上版本,不支持oracle数据库的方法

    解决php7/phalcon3.2以上版本,不支持oracle数据库的方法 phalcon3.2(3.0以上)版本不支持oracle的方法. https://github.com/phalcon/in ...

  8. 设计模式--建造者模式C++实现

    建造者模式C++实现 1定义 将一个复杂对象的构建和他的表示分离,使得同样的构建过程可以创造不同的表示 注:在模板方法中,实现了父类调用子类方法的功能,且,通过钩子实现了方法的选择性调用.但是其中整体 ...

  9. Java连接MySQL数据库——代码

    工具:eclipse MySQL5.7.17 MySQL连接驱动:mysql-connector-java-5.1.43.jar 加载驱动:我是用MAVEN进行管理 数据库连接信息: 数据库名称:wu ...

  10. 整合Struts2与Spring

    一.需要的JAR文件为:Spring和Struts2框架本身需要的JAR文件以及他们所依赖的JAR文件