转自:http://blog.sina.com.cn/s/blog_ae33b83901018euz.html

------------------

HBase有几个高级特性,在你设计表时可以使用。这些特性不一定联系到模式或行键设计,但是它们定义了某些方面的表行为。本节我们讨论这些配置参数,以及你可以如何使用它们。
1 可配置的数据块大小
HFile数据块大小可以在列族层次设置。这个数据块不同于之前谈到的HDFS数据块。其默认值是65,536字节,或64KB。数据块索引存储每个HFile数据块的起始键。数据块大小设置影响到数据块索引的大小。数据块越小,索引越大,从而占用更大内存空间。同时因为加载进内存的数据块更小,随机查找性能更好。但是如果你需要更好的序列扫描性能,那么一次能够加载更多HFile数据进入内存则更为合理,这意味着数据块应该设置为更大的值。相应地索引变小,你将在随机读性能上付出代价。
你可以在表实例化时设置数据块大小,如下所示:
hbase(main):002:0> create 'mytable',
{NAME => 'colfam1', BLOCKSIZE => '65536'}
2 数据块缓存
把数据放进读缓存,但工作负载却经常不能从中获得性能提升——例如,如果一张表或表里的列族只被顺序化扫描访问或者很少被访问,你不会介意Get或Scan花费时间是否有点儿长。在这种情况下,你可以选择关闭那些列族的缓存。如果你只是执行很多顺序化扫描,你会多次倒腾缓存,并且可能会滥用缓存把应该放进缓存获得性能提升的数据给排挤出去。如果关闭缓存,你不仅可以避免上述情况发生,而且可以让出更多缓存给其他表和同一表的其他列族使用。
数据块缓存默认是打开的。你可以在新建表或者更改表时关闭它:
hbase(main):002:0> create 'mytable',
{NAME => 'colfam1', BLOCKCACHE => 'false’}
3 激进缓存
你可以选择一些列族,赋予它们在数据块缓存里有更高的优先级(LRU缓存)。如果你预期一个列族比另一个列族随机读更多,这个特性迟早用得上。这个配置也是在表实例化时设定:
hbase(main):002:0> create 'mytable',
{NAME => 'colfam1', IN_MEMORY => 'true'}
IN_MEMORY参数的默认值是false。因为HBase除了在数据块缓存里保存这个列族相比其他列族更激进之外并不提供额外的保证,该参数在实践中设置为true不会变化太大。
4 布隆过滤器(Bloom filters)
数据块索引提供了一个有效的方法,在访问一个特定的行时用来查找应该读取的HFile的数据块。但是它的效用是有限的。HFile数据块的默认大小是64KB,这个大小不能调整太多。
如果你要查找一个短行,只在整个数据块的起始行键上建立索引无法给你细粒度的索引信息。例如,如果你的行占用100字节存储空间,一个64KB的数据块包含(64 * 1024)/100 = 655.53 = ~700行,而你只能把起始行放在索引位上。你要查找的行可能落在特定数据块上的行区间里,但也不是肯定存放在那个数据块上。这有多种情况的可能,或者该行在表里不存在,或者存放在另一个HFile里,甚至在MemStore里。这些情况下,从硬盘读取数据块会带来IO开销,也会滥用数据块缓存。这会影响性能,尤其是当你面对一个巨大的数据集并且有很多并发读用户时。
布隆过滤器允许你对存储在每个数据块的数据做一个反向测试。当某行被请求时,先检查布隆过滤器看看该行是否不在这个数据块。布隆过滤器要么确定回答该行不在,要么回答它不知道。这就是为什么我们称它是反向测试。布隆过滤器也可以应用到行里的单元上。当访问某列标识符时先使用同样的反向测试。
布隆过滤器也不是没有代价。存储这个额外的索引层次占用额外的空间。布隆过滤器随着它们的索引对象数据增长而增长,所以行级布隆过滤器比列标识符级布隆过滤器占用空间要少。当空间不是问题时,它们可以帮助你榨干系统的性能潜力。
你可以在列族上打开布隆过滤器,如下所示:
hbase(main):007:0> create 'mytable',
{NAME => 'colfam1', BLOOMFILTER => 'ROWCOL'}
BLOOMFILTER参数的默认值是NONE。一个行级布隆过滤器用ROW打开,列标识符级布隆过滤器用ROWCOL打开。行级布隆过滤器在数据块里检查特定行键是否不存在,列标识符级布隆过滤器检查行和列标识符联合体是否不存在。ROWCOL布隆过滤器的开销高于ROW布隆过滤器。
5 生存时间(TTL)
应用系统经常需要从数据库里删除老数据。由于数据库很难超过某种规模,所以传统上数据库内建了许多灵活处理办法。例如,在TwitBase里你不愿意删除用户在使用应用系统期间生成的任何推帖。这些都是用户生成数据,将来有一天当你执行一些高级分析时可能有用。但是并不需要保存所有推帖用于实时访问。所以早于某个时间的推帖可以归档存放到平面文件里。
HBase可以让你在数秒内在列族级别设置一个TTL。早于指定TTL值的数据在下一次大合并时会被删除。如果你在同一单元上有多个时间版本,早于设定TTL的版本会被删除。你可以关闭TTL或者通过设置其值为INT.MAX_VALUE (2147483647)来让它永远打开(这是默认值)。你可以在建表时设置TTL,如下所示:
hbase(main):002:0> create 'mytable', {NAME => 'colfam1', TTL => '18000'}
该命令在colfam1列族上设置TTL为18,000秒=5小时。colfam1里超过5小时的数据将会在下一次大合并时被删除。
6 压缩
HFile可以被压缩并存放在HDFS上。这有助于节省硬盘IO,但是读写数据时压缩和解压缩会抬高CPU利用率。压缩是表定义的一部分,可以在建表或模式改变时设定。除非你确定不会从压缩中受益,我们推荐你打开表的压缩。只有在数据不能被压缩或者因为某种原因服务器的CPU利用率有限制要求的情况下,有可能会关闭压缩特性。
HBase可以使用多种压缩编码,包括LZO、Snappy和GZIP。LZO[1]和Snappy[2]是其中最流行的两种。Snappy由Google在2011年发布,发布不久Hadoop和HBase项目开始提供支持。在此之前,选择的是LZO编码。Hadoop使用的LZO原生库受GPLv2版权控制,不能放在Hadoop和Hbase的任何发行版里;它们必须单独安装。另一方面,Snappy拥有BSD许可(BSD-licensed),所以它更容易和Hadoop和HBase发行版捆绑在一起。LZO和Snappy的压缩比例和压缩/解压缩速度差不多。
当建表时你可以在列族上打开压缩,如下所示:
hbase(main):002:0> create 'mytable',
{NAME => 'colfam1', COMPRESSION => 'SNAPPY'}
注意数据只在硬盘上是压缩的。在内存里(MemStore或BlockCache)或网络传输时是没有压缩的。
改变压缩编码的做法不应该经常发生,但是如果你的确需要改变某个列族的压缩编码,直接做就可以。你需要更改表定义,设定新压缩编码。此后合并时,生成的HFile全部会采用新编码压缩。这个过程不需要创建新表和复制数据。但你要确保直到改变编码后所有老HFile被合并后才能从集群中删除老编码函数库。
7 单元时间版本
HBase在默认情况下每个单元维护三个时间版本。这个属性是可以设置的。如果你只需要一个版本,推荐你在设置表时只维护一个版本。这样系统就不会保留更新单元的多个时间版本。时间版本也是在列族级设置的,可以在表实例化时设定:
hbase(main):002:0> create 'mytable', {NAME => 'colfam1', VERSIONS => 1}
你可以在同一个create语句里为列族指定多个属性,如下所示:
hbase(main):002:0> create 'mytable',
{NAME => 'colfam1', VERSIONS => 1, TTL => '18000'}
你也可以指定列族存储的最少时间版本数,如下所示:
hbase(main):002:0> create 'mytable', {NAME => 'colfam1', VERSIONS => 5,
MIN_VERSIONS => '1'}
在列族上同时设定TTL也是迟早有用的。如果当前存储的所有时间版本都早于TTL,至少MIN_VERSION个最新版本会保留下来。这样确保在你的查询以及数据早于TTL时有结果返回。

HBase列族高级配置的更多相关文章

  1. 数据源、数据集、同步任务、数据仓库、元数据、数据目录、主题、来源系统、标签、增量识别字段、修改同步、ES索引、HBase列族、元数据同步、

    数据源.数据集.同步任务.数据仓库.元数据.数据目录.主题.来源系统.标签. 增量识别字段.修改同步.ES索引.HBase列族.元数据同步.DS.ODS.DW.DM.zk集群地址 == 数据源 数据源 ...

  2. 从HBase底层原理解析HBASE列族不能设计太多的原因?

    在之前的文章<深入探讨HBASE>中,笔者详细介绍了: HBase基础知识(包括简介.表结构).系统架构.数据存储 WAL log和HBase中LSM树的应用 HBase寻址机制 mino ...

  3. HBASE列族不能太多的真相 (一个table有几个列族就有几个 Store)

    HRegionServer内部管理了一系列HRegion对象,每个HRegion对 应了table中的一个region,HRegion中由多 个HStore组成.每个HStore对应了Table中的一 ...

  4. HBase—列族数据库的术语

    1. 列族数据库的基本组件 键空间,行键,列,列族 2. 什么是键空间 keyspace? 键空间 keyspace 是列族数据库的顶级数据结构,它在逻辑上能够容纳列族,行键以及与之相关的其他数据结构 ...

  5. HBase 列族数量为什么越少越好

    http://blog.csdn.net/r1soft/article/details/63253985 http://www.cnblogs.com/nucdy/p/5965113.html

  6. HBase最佳实践-列族设计优化

    本文转自hbase.收藏学习下. 随着大数据的越来越普及,HBase也变得越来越流行.会用HBase现在已经变的并不困难,然而,怎么把它用的更好却并不简单.那怎么定义'用的好'呢?很简单,在保证系统稳 ...

  7. 为什么不建议在 HBase 中使用过多的列族

    我们知道,一张 HBase 表包含一个或多个列族.HBase 的官方文档中关于 HBase 表的列族的个数有两处描述: A typical schema has between 1 and 3 col ...

  8. HBase中Memstore存在的意义以及多列族引起的问题和设计

    Memstore存在的意义 HBase在WAL机制开启的情况下,不考虑块缓存,数据日志会先写入HLog,然后进入Memstore,最后持久化到HFile中.HFile是存储在hdfs上的,WAL预写日 ...

  9. hbase笔记---新版api之对表的操作,指定region创建,普通创建,删除,修改列族信息

    hbase 对于表的相关操作: 实现功能有:指定region创建,普通创建,删除,修改列族信息 package learm.forclass.testclass; import org.apache. ...

随机推荐

  1. ConcurrentLinkedQueue 模拟火车售票过程

    火车票类 public class Ticket { private String NO; // 车票编号 private double price; // 票价 public Ticket(Stri ...

  2. DP 过河卒

    棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为“马拦过河卒”. 棋盘用坐标 ...

  3. java web 程序---猜数字游戏的猜了多少次的代码

    思路:用setAttribute()放 ,然后直接输出 Integer str=(Integer)session.getAttribute("count"); int num3= ...

  4. [转载,感觉写的非常详细]DUBBO配置方式详解

    [转载,感觉写的非常详细]DUBBO配置方式详解 原文链接:http://www.cnblogs.com/chanshuyi/p/5144288.html DUBBO 是一个分布式服务框架,致力于提供 ...

  5. 经典的CNN网络模型概述

    接下来几天,将把自己最近读的关于图片分类的经典网络模型论文整理一遍.大概做个摘要.这些论文都是在imagenet上1.2 million数据训练出来的. 由于从这些预训练的网络训练的deep feat ...

  6. Hashtable、HashMap

    JDK1.6 API public class Hashtable<K,V>extends Dictionary<K,V>implements Map<K,V>, ...

  7. [Z] 用GDB调试程序

    原文:http://blog.csdn.net/haoel/article/details/2879 用GDB调试程序 GDB概述———— GDB是GNU开源组织发布的一个强大的UNIX下的程序调试工 ...

  8. Spring源码研究--下载-编译-导入eclipse-验证

    一,环境配置 操作系统:Unbutu14.04LTS JDK: 1.8.0_40 git: 1.9.1 gradle: 2.2.1 二,源码下载-编译-导入eclipse-验证 1,下载 使用git直 ...

  9. C#中的数据格式转换 (未完待更新)

    一.string to int int intA = 0;1.intA =int.Parse(str);2.int.TryParse(str, out intA);3.intA = Convert.T ...

  10. mongodb主从复制 副本集(六)

    主从复制副本集 8888.conf dbpath = D:\software\MongoDBDATA\07\8888 #主数据库地址port = 8888 #主数据库端口号bind_ip = 127. ...