转:https://testerhome.com/topics/4225

0.背景

组内需要一款轻量级的性能测试工具,之前考虑过LR(太笨重,单实例,当然它的地位是不容置疑的),阿里云的PTS(https://pts.aliyun.com/lite/index.htm, 仅支持阿里云内网和公网机器),Gatling(http://gatling.io/#/)没有TPS数据等等,不太适合我们。

nGrinderr是NAVER(韩国最大互联网公司NHN旗下搜索引擎网站)开源的性能测试工具,直接部署成web服务,支持多用户使用,可扩展性好,可自定义plugin(http://www.cubrid.org/wiki_ngrinder/entry/how-to-develop-plugin),wiki文档较丰富(http://www.cubrid.org/wiki_ngrinder/entry/ngrinder-devzone),数据及图形化展示满足需求;但是展示的统计数据较简单,二次开发整合数据:TPS标准差,TPS波动率,最小/大RT,RT 25/50/75/80/85/90/95/99百分位数字段,并将这些数据展示在详细测试报告页中。

1.项目剖析

1-1. nGrinder架构

nGrinder是一款在一系列机器上执行Groovy或JPython测试脚本的应用,内部引擎是基于Grinder。
架构图:

 

层级图:

 

默认的NGRINDER_HOME为/root/.ngrinder, 大多是配置文件和数据文件。

 

目录/root/.ngrinder/perftest/0_999下,以每个test_id为名的文件夹对应的存储了执行性能测试时的采样数据:

 

*.data文件就是执行性能测试时对应的各种性能采样数据,性能测试详细报告页就是根据这些data文件,进行图形化展示(ajax)。

nGrinder包含2大组件:
1)Controller
为性能测试提供web interface
协同测试进程
收集和显示测试数据
新建和修改脚本

2)Agent
agent mode: 运行进程和线程,压测目标服务
monitor mode: 监控目标系统性能(cpu/memory), 可以自定义收集的数据(比如 jvm数据)

http://www.cubrid.org/wiki_ngrinder/entry/general-architecture

1-2. 技术栈

1)Controller 层
FreeMarker: 基于Java的模板引擎
Spring Security
Spring Mvc:Spring MVC provides rich functionality for building robust web applications.
GSon
SVNKit Dav

2)Service 层
Grinder
Spring
EhCache: Ehcache has excellent Spring integration.

3)Data层
Spring Data
Hibernate:Hibernate is a powerful technology for persisting data,and it is Spring Data back-end within nGrinder. 
H2: (nGrinder默认使用该DB)
Cubrid:(nGrinder同一家公司的DB)
Liquidase: Liquibase is an open source that automates database schema updates. 
SVNKit

http://www.cubrid.org/wiki_ngrinder/entry/technology-stack

2.源码实现

需求:在详细测试报告页中展示TPS标准差,TPS波动率,最小/大RT,RT 25/50/75/80/85/90/95/99百分位数这些数据。

修改Controller层,增加数据处理业务逻辑(计算TPS标准差,TPS波动率,最小/大RT,RT 25/50/75/80/85/90/95/99百分位数)

在获取采样数据
ngrinder-core/src/main/java/net/grinder/SingleConsole.java中新增处理业务逻辑,核心修改代码片段:

    // tps list
List<Double> tps = new CopyOnWriteArrayList<Double>();
// rt list
List<Double> meanTestTime = new CopyOnWriteArrayList<Double>(); /**
*
* 每次请求调用一次 Build up statistics for current sampling.
*
* @param accumulatedStatistics
* intervalStatistics
* @param intervalStatistics
* accumulatedStatistics
*/
protected void updateStatistics(StatisticsSet intervalStatistics,
StatisticsSet accumulatedStatistics) {
Map<String, Object> result = newHashMap();
result.put("testTime", getCurrentRunningTime() / 1000);
List<Map<String, Object>> cumulativeStatistics = new ArrayList<Map<String, Object>>();
List<Map<String, Object>> lastSampleStatistics = new ArrayList<Map<String, Object>>(); for (Test test : accumulatedStatisticMapPerTest.keySet()) {
Map<String, Object> accumulatedStatisticMap = newHashMap();
Map<String, Object> intervalStatisticsMap = newHashMap();
StatisticsSet accumulatedSet = this.accumulatedStatisticMapPerTest
.get(test);
StatisticsSet intervalSet = this.intervalStatisticMapPerTest
.get(test); accumulatedStatisticMap.put("testNumber", test.getNumber());
accumulatedStatisticMap.put("testDescription",
test.getDescription());
intervalStatisticsMap.put("testNumber", test.getNumber());
intervalStatisticsMap.put("testDescription", test.getDescription());
// When only 1 test is running, it's better to use the parametrized
// snapshot.
for (Entry<String, StatisticExpression> each : getExpressionEntrySet()) {
if (INTERESTING_STATISTICS.contains(each.getKey())) {
accumulatedStatisticMap.put(
each.getKey(),
getRealDoubleValue(each.getValue().getDoubleValue(
accumulatedSet)));
intervalStatisticsMap.put(
each.getKey(),
getRealDoubleValue(each.getValue().getDoubleValue(
intervalSet)));
}
}
cumulativeStatistics.add(accumulatedStatisticMap);
lastSampleStatistics.add(intervalStatisticsMap);
} Map<String, Object> totalStatistics = newHashMap(); for (Entry<String, StatisticExpression> each : getExpressionEntrySet()) {
if (INTERESTING_STATISTICS.contains(each.getKey())) {
totalStatistics.put(each.getKey(), getRealDoubleValue(each
.getValue().getDoubleValue(accumulatedStatistics)));
}
} LOGGER.debug("hugang start get plug data"); // 获取tps, rt集合
for (Entry<String, StatisticExpression> each : getExpressionEntrySet()) {
if ("TPS".equals(each.getKey())) {
tps.add((Double) getRealDoubleValue(each.getValue()
.getDoubleValue(intervalStatistics)));
} else if ("Mean_Test_Time_(ms)".equals(each.getKey())) {
meanTestTime.add((Double) getRealDoubleValue(each.getValue()
.getDoubleValue(intervalStatistics)));
}
} result.put("totalStatistics", totalStatistics);
result.put("cumulativeStatistics", cumulativeStatistics);
result.put("lastSampleStatistics", lastSampleStatistics);
result.put("tpsChartData", getTpsValues());
result.put("peakTpsForGraph", this.peakTpsForGraph);
synchronized (this) {
result.put(GrinderConstants.P_PROCESS, this.runningProcess);
result.put(GrinderConstants.P_THREAD, this.runningThread);
result.put("success", !isAllTestFinished());
}
// Finally overwrite.. current one.
this.statisticData = result;
} /**
* 从updateStatistics()累加数据, list :rt 和 tps, 为成员变量
*
* 再处理集合,放到statisticData中
*
* @author hugang
*/
public void getPlusResult(){ LOGGER.debug("hugang getPlusResult() tpslist {} rtlist is {}",
tps.toString(), meanTestTime.toString()); int i = 0;
int j = 0;
// list转成数组, 标准库使用数组作为参数
double[] tpsArray = new double[tps.size()];
for (double tpsNum : tps) {
tpsArray[i++] = tpsNum;
} // list转成数组
double[] meanTestTimeArray = new double[meanTestTime.size()];
for (double meanTime : meanTestTime) {
meanTestTimeArray[j++] = meanTime;
} // tps 标准差
double tpsStd = new StandardDeviation().evaluate(tpsArray);
// tps 平均值
double tpsMean = new Mean().evaluate(tpsArray, 0, tpsArray.length);
// tps 波动率= tps 标准差 / tps 平均值
double tpsVix = 0;
if(0 != tpsMean){
tpsVix = tpsStd / tpsMean;
} // meanTestTime 百分位数
Percentile percentile = new Percentile();
// 先排序
Arrays.sort(meanTestTimeArray);
// meanTestTime最小值
double minMeanTime = meanTestTimeArray[0];
double twentyFiveMeanTime = percentile.evaluate(meanTestTimeArray, 25);
double fiftyMeanTime = percentile.evaluate(meanTestTimeArray, 50);
double serventyFiveMeanTime = percentile
.evaluate(meanTestTimeArray, 75);
double eightyMeanTime = percentile.evaluate(meanTestTimeArray, 80);
double eightyFiveMeanTime = percentile.evaluate(meanTestTimeArray, 85);
double ninetyMeanTime = percentile.evaluate(meanTestTimeArray, 90);
double ninetyFiveMeanTime = percentile.evaluate(meanTestTimeArray, 95);
double ninetyNineMeanTime = percentile.evaluate(meanTestTimeArray, 99); int length = meanTestTimeArray.length;
// meanTestTime最高值
double maxMeanTime = meanTestTimeArray[length - 1];
// meanTestTime平均值
// double TimeMean = new Mean().evaluate(meanTestTimeArray, 0,
// meanTestTimeArray.length); LOGGER.debug(
"hugang plug Statistics MinMeanTime {} MaxMeanTime is {}",
minMeanTime, maxMeanTime);
// 附加信息 hugang
// tps 标准差, tps 波动率, 最小/最大RT, RT百分位数
Map<String, Object> plusStatistics = newHashMap();
plusStatistics.put("tpsStd", tpsStd);
// plusStatistics.put("tpsMean", tpsMean);
plusStatistics.put("tpsVix", tpsVix);
plusStatistics.put("minMeanTime", minMeanTime);
plusStatistics.put("twentyFiveMeanTime", twentyFiveMeanTime);
plusStatistics.put("fiftyMeanTime", fiftyMeanTime);
plusStatistics.put("serventyFiveMeanTime", serventyFiveMeanTime);
plusStatistics.put("eightyMeanTime", eightyMeanTime);
plusStatistics.put("eightyFiveMeanTime", eightyFiveMeanTime);
plusStatistics.put("ninetyMeanTime", ninetyMeanTime);
plusStatistics.put("ninetyFiveMeanTime", ninetyFiveMeanTime);
plusStatistics.put("ninetyNineMeanTime", ninetyNineMeanTime);
plusStatistics.put("maxMeanTime", maxMeanTime); LOGGER.debug("SingleConsole plug Statistics map plusStatistics {}", plusStatistics); this.statisticData.put("plusStatistics", plusStatistics);
} /**
*
* 停止采样数据
* Stop sampling.
*/
public void unregisterSampling() {
this.currentNotFinishedProcessCount = 0;
if (sampleModel != null) {
this.sampleModel.reset();
this.sampleModel.stop();
}
LOGGER.info("Sampling is stopped");
informTestSamplingEnd(); // 结束采样后,处理数据
// hugang
getPlusResult();
}

Map statisticData为不同数据集集合。

Service层从SingleConsole类中获取数据集statisticData:
ngrinder-controller/src/main/java/org/ngrinder/perftest/server/PerfTestService.java 中Map<String, Object> result = consoleManager.getConsoleUsingPort(perfTest.getPort()).getStatisticsData();


/**
* Update the given {@link PerfTest} properties after test finished.
*
* @param perfTest perfTest
*
* getConsoleUsingPort()获取数据
*
*
* hugang
*/
public void updatePerfTestAfterTestFinish(PerfTest perfTest) {
checkNotNull(perfTest);
Map<String, Object> result = consoleManager.getConsoleUsingPort(perfTest.getPort()).getStatisticsData();
@SuppressWarnings("unchecked")
Map<String, Object> totalStatistics = MapUtils.getMap(result, "totalStatistics", MapUtils.EMPTY_MAP);
// 获取附加数据
Map<String, Object> plusStatistics = MapUtils.getMap(result, "plusStatistics", MapUtils.EMPTY_MAP); LOGGER.info("Total Statistics for test {} is {}", perfTest.getId(), totalStatistics);
LOGGER.info("plug Statistics for test {} is {}", perfTest.getId(), plusStatistics); perfTest.setTps(parseDoubleWithSafety(totalStatistics, "TPS", 0D));
perfTest.setMeanTestTime(parseDoubleWithSafety(totalStatistics, "Mean_Test_Time_(ms)", 0D));
perfTest.setPeakTps(parseDoubleWithSafety(totalStatistics, "Peak_TPS", 0D));
perfTest.setTests(MapUtils.getDouble(totalStatistics, "Tests", 0D).longValue());
perfTest.setErrors(MapUtils.getDouble(totalStatistics, "Errors", 0D).longValue()); // 附加信息写到model, 持久化
perfTest.setTpsStd(parseDoubleWithSafety(plusStatistics, "tpsStd", 0D));
perfTest.setTpsVix(parseDoubleWithSafety(plusStatistics, "tpsVix", 0D));
perfTest.setMinRT(parseDoubleWithSafety(plusStatistics, "minMeanTime", 0D));
perfTest.setTwentyFiveMeanTime(parseDoubleWithSafety(plusStatistics, "twentyFiveMeanTime", 0D));
perfTest.setFiftyMeanTime(parseDoubleWithSafety(plusStatistics, "fiftyMeanTime", 0D));
perfTest.setServentyFiveMeanTime(parseDoubleWithSafety(plusStatistics, "serventyFiveMeanTime", 0D));
perfTest.setEightyMeanTime(parseDoubleWithSafety(plusStatistics, "eightyMeanTime", 0D));
perfTest.setEightyFiveMeanTime(parseDoubleWithSafety(plusStatistics, "eightyFiveMeanTime", 0D));
perfTest.setNinetyMeanTime(parseDoubleWithSafety(plusStatistics, "ninetyMeanTime", 0D));
perfTest.setNinetyFiveMeanTime(parseDoubleWithSafety(plusStatistics, "ninetyFiveMeanTime", 0D));
perfTest.setNinetyNineMeanTime(parseDoubleWithSafety(plusStatistics, "ninetyNineMeanTime", 0D));
perfTest.setMaxRT(parseDoubleWithSafety(plusStatistics, "maxMeanTime", 0D)); }

修改Model层,在javabean中增加TPS标准差,TPS波动率,最小/大RT,RT 25/50/75/80/85/90/95/99百分位数, JPA持久化(H2 DB新增TPS标准差,TPS波动率,最小/大RT,RT 25/50/75/80/85/90/95/99百分位数字段)

model文件为:ngrinder-core/src/main/java/org/ngrinder/model/PerfTest.java


/**
* 新增字段,TPS标准差,TPS波动率,最小/大RT,RT 25/50/75/80/85/90/95/99百分位数
* hugang
*/
@Expose
@Column(name = "tpsStd")
private Double tpsStd; @Expose
@Column(name = "tpsVix")
private Double tpsVix; @Expose
@Column(name = "minRT")
private Double minRT; @Expose
@Column(name = "twentyFiveMeanTime")
private Double twentyFiveMeanTime; @Expose
@Column(name = "fiftyMeanTime")
private Double fiftyMeanTime; @Expose
@Column(name = "serventyFiveMeanTime")
private Double serventyFiveMeanTime; @Expose
@Column(name = "eightyMeanTime")
private Double eightyMeanTime; @Expose
@Column(name = "eightyFiveMeanTime")
private Double eightyFiveMeanTime; @Expose
@Column(name = "ninetyMeanTime")
private Double ninetyMeanTime; @Expose
@Column(name = "ninetyFiveMeanTime")
private Double ninetyFiveMeanTime; @Expose
@Column(name = "ninetyNineMeanTime")
private Double ninetyNineMeanTime; @Expose
@Column(name = "maxRT")
private Double maxRT; 对应的set(), get()

还需修改db change文件(因为系统DB默认使用H2, 只需修改H2对应的xml),ngrinder-controller/src/main/resources/ngrinder_datachange_logfile/db.changelog_schema_H2.xml


create table PERF_TEST (
id bigint generated by default as identity unique,
created_date timestamp,
last_modified_date timestamp,
agent_count integer,
description varchar(2048),
distribution_path varchar(255),
duration bigint,
errors integer,
finish_time timestamp,
ignore_sample_count integer,
init_processes integer,
init_sleep_time integer,
last_progress_message varchar(2048),
mean_test_time double,
peak_tps double,
errorRate double,
tpsStd double,
tpsVix double,
minRT double,
twentyFiveMeanTime double,
fiftyMeanTime double,
serventyFiveMeanTime double,
eightyMeanTime double,
eightyFiveMeanTime double,
ninetyMeanTime double,
ninetyFiveMeanTime double,
ninetyNineMeanTime double,
maxRT double,

系统重启加载时,Liquidase会自动更新DB。

修改View层,在详细报告对应的freemarker模板新增TPS标准差,TPS波动率,最小/大RT,RT 25/50/75/80/85/90/95/99百分位数字段,前端新增展示这些数据

ngrinder-controller/src/main/webapp/WEB-INF/ftl/perftest/detail_report.ftl



                <#-- hugang -->
<#-- 新增 错误率,TPS标准差,TPS波动率,最小RT, 最大RT, RT 25/50/75/80/85/90/95/99百分位数 -->
<tr>
<th><@spring.message "perfTest.report.errorRate"/></th>
<td>${(test.errors /(test.tests + test.errors))!""}</td>
</tr>
<tr>
<th><@spring.message "perfTest.report.tpsStd"/></th>
<td>${test.tpsStd!""}</td>
</tr>
<tr>
<th><@spring.message "perfTest.report.tpsVix"/></th>
<td>${test.tpsVix!""}</td>
</tr>
<tr>
<th><@spring.message "perfTest.report.minRT"/></th>
<td>${test.minRT!""}&nbsp;&nbsp; <code>ms</code></td>
</tr>
<tr>
<th><@spring.message "perfTest.report.TwentyFiveMeanTime"/></th>
<td>${test.twentyFiveMeanTime!""}&nbsp;&nbsp; <code>ms</code></td>
</tr>
<tr>
<th><@spring.message "perfTest.report.FiftyMeanTime"/></th>
<td>${test.fiftyMeanTime!""}&nbsp;&nbsp; <code>ms</code></td>
</tr>
<tr>
<th><@spring.message "perfTest.report.ServentyFiveMeanTime"/></th>
<td>${test.serventyFiveMeanTime!""}&nbsp;&nbsp; <code>ms</code></td>
</tr>
<tr>
<th><@spring.message "perfTest.report.EightyMeanTime"/></th>
<td>${test.eightyMeanTime!""}&nbsp;&nbsp; <code>ms</code></td>
</tr>
</tr>
<tr>
<th><@spring.message "perfTest.report.EightyFiveMeanTime"/></th>
<td>${test.eightyFiveMeanTime!""}&nbsp;&nbsp; <code>ms</code></td>
</tr>
</tr>
<tr>
<th><@spring.message "perfTest.report.NinetyMeanTime"/></th>
<td>${test.ninetyMeanTime!""}&nbsp;&nbsp; <code>ms</code></td>
</tr>
</tr>
<tr>
<th><@spring.message "perfTest.report.NinetyFiveMeanTime"/></th>
<td>${test.ninetyFiveMeanTime!""}&nbsp;&nbsp; <code>ms</code></td>
</tr>
</tr>
<tr>
<th><@spring.message "perfTest.report.NinetyNineMeanTime"/></th>
<td>${test.ninetyNineMeanTime!""}&nbsp;&nbsp; <code>ms</code></td>
</tr>
</tr>
<tr>
<th><@spring.message "perfTest.report.maxRT"/></th>
<td>${test.maxRT!""}&nbsp;&nbsp; <code>ms</code></td>
</tr>

还有个坑,就是从github拉下的代码,源码中pom.xml依赖的jar包不完整,直接打不了包,项目有的依赖的jar 公有maven仓库已经没有了,需要自己从网上找jar包,安装到本地仓库,我归整了下:

http://download.csdn.net/detail/neven7/9443895

直接在ngrinder根路径下执行打包命令:

mvn -Dmaven.test.skip=true clean package

部署生成的war即可。

3.结果展示

在详细报告页新增如下数据结果:

性能测试工具 nGrinder 项目剖析及二次开发的更多相关文章

  1. 开源性能测试工具Locust使用篇(二)

    那如何理解Locust和TaskSet这两个类呢? class HttpLocust(Locust) 在Locust类中,具有一个client属性,它对应着虚拟用户作为客户端所具备的请求能力,也就是我 ...

  2. OA项目实战(二) 开发准备

    上次的博文OA系统实践(一) 概述中,我们已经了解了OA的相关概念.从本次博文开始,我们做一个简单的OA实例. 在OA开发之前,有几个工作们需要提前做.一个是对需求进行分析,另一个是对开发环境进行选择 ...

  3. 基于VB语言对SolidWorks参数化设计的二次开发

    0 引言 随着数字信息化进程的快速推进,如今三维CAD技术在越来越多的企业当中得到运用.为了降低在设计生产中的成本,缩短设计周期,增强企业竞争力,三维参数化技术随之应声,它凭借更贴近现代概念的设计以及 ...

  4. 手机游戏渠道SDK接入工具项目分享(二)万事开头难

    一般接到任务后程序员们通常都开始着手进行技术调研了,但我这活是项目负责人.还有一大堆事情要先期准备,没人能帮忙. 一.人力配置 考虑的之前已经有一波人搞了大半年,但没有起色,先期也没有太大人力需求,所 ...

  5. Linux系统性能测试工具(二)——内存压力测试工具memtester

    本文介绍关于Linux系统(适用于centos/ubuntu等)的内存压力测试工具-memtester.内存性能测试工具包括: 内存带宽测试工具——mbw: 内存压力测试工具——memtester: ...

  6. 开源多线程性能测试工具-sysbench

    导读 sysbench是一款开源的多线程性能测试工具,可以执行CPU/内存/线程/IO/数据库等方面的性能测试.数据库目前支持MySQL/Oracle/PostgreSQL.本文主要演示Mysql测试 ...

  7. 【转】开源性能测试工具 - Apache ab 介绍

    版权声明:本文可以被转载,但是在未经本人许可前,不得用于任何商业用途或其他以盈利为目的的用途.本人保留对本文的一切权利.如需转载,请在转载是保留此版权声明,并保证本文的完整性.也请转贴者理解创作的辛劳 ...

  8. 【腾讯开源】Android性能测试工具APT使用指南

    [腾讯开源]Android性能测试工具APT使用指南 2014-04-23 09:58 CSDN CODE 作者 CSDN CODE 17 7833 腾讯 apt 安卓 性能测试 开源 我们近日对腾讯 ...

  9. 性能测试工具Locust的使用

    一.写在前面 官网:https://www.locust.io/ 官方使用文档:https://docs.locust.io/en/latest/ 大并发量测试时,建议在linux系统下进行. 二.L ...

随机推荐

  1. 恢复mysql数据库误删数据

    前言 某一天,天朗气清:突然传来消息:数据库被删库了!这简直不亚于8级大地震呀:一找原因,服务器宕机造成了数据库数据丢失.于是,通过日志恢复数据的救援开始了. 正文 在数据库开启binlog功能 找到 ...

  2. 对java前后端分离的理解

    到目前为止,身为一个java后端开发人员的我, 在工作期间,无非就是ui设计页面,前端开发html,之后将做好的页面交给我,我负责后台逻辑一件html的页面渲染. 好好滴一个后台开发人员,莫名其妙的做 ...

  3. 2017/11/7 Leetcode 日记

    2017/11/7 Leetcode 日记 669. Trim a Binary Search Tree Given a binary search tree and the lowest and h ...

  4. Codeforces 521 E cycling city

    cf的一道题,非常有意思,题目是问图中是否存在两个点,使得这两个点之间有三条路径,而且三条路径没有公共点. 其实就是判断一下是否为仙人掌就行了,如果不是仙人掌的话肯定就存在,题目难在输出路径上,改了半 ...

  5. 腾讯通消息webSDK踩坑

    1.腾讯通提供一个通过http协议的接口,可用于发送消息,公告等功能,要使用其功能首先要开启RTX_HTTPServer服务. 2.阅读文档http://rtx.tencent.com/sdk/,为了 ...

  6. Ural 1519 Formula 1 插头DP

    这是一道经典的插头DP单回路模板题. 用最小表示法来记录连通性,由于二进制的速度,考虑使用8进制. 1.当同时存在左.上插头的时候,需要判断两插头所在连通块是否相同,若相同,只能在最后一个非障碍点相连 ...

  7. SQLSERVER里面RR隔离级别没有GAP锁

    http://www.cnblogs.com/MYSQLZOUQI/articles/3862721.html

  8. 进程上下文VS中断上下文

    转载:http://www.cnblogs.com/zzx1045917067/archive/2012/12/19/2824552.html 内核空间和用户空间是现代操作系统的两种工作模式,内核模块 ...

  9. ClientDataSet的版本兼容性

    ClientDataSet的版本兼容性 在Delphi的早期版本中,Data这个Variant类型的值内部使用的是AnsiString来存贮的字节流,但我并不确定Delphi从什么时候开始,将其改为了 ...

  10. Java:准备学习的高级主题

    ClassLoader GC Concurrent Transaction JTA JPA JDBC JNDI JNI JNA JNative OSGI JMS JSTL EL Servlet NIO ...