2671: Calc

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 303  Solved: 157

Description

  给出N,统计满足下面条件的数对(a,b)的个数:
  1.1<=a<b<=N
  2.a+b整除a*b

Input

 一行一个数N

Output

 一行一个数表示答案

Sample Input

15

Sample Output

4

HINT

数据规模和约定

Test N Test N

1 <=10 11 <=5*10^7

2 <=50 12 <=10^8

3 <=10^3 13 <=2*10^8

4 <=5*10^3 14 <=3*10^8

5 <=2*10^4 15 <=5*10^8

6 <=2*10^5 16 <=10^9

7 <=2*10^6 17 <=10^9

8 <=10^7 18 <=2^31-1

9 <=2*10^7 19 <=2^31-1

10 <=3*10^7 20 <=2^31-1

Source

【分析】

  这题的复杂度还挺迷人的。

  然后$\sqrt n$也没发现,以为筛$\mu$都要$O(n)$,什么杜教筛的幸好不会。。

  首先分析$(a+b)|(a*b) → (a/g+b/g)|(a/g*b/g*g) →(a/g+b/g)|g$

  那就是互质的$a',b'$ 找他们的公倍数$g$就行了。

  写正常一点就是$$\sum_{j=1}^{N}\sum_{i=1}^{j-1}\dfrac{n}{j*(i+j)} [gcd(i,j)==1]$$

  到了这里,我就傻眼了,其实嘛。。。j并不会到$n$,只是到$\sqrt{n}$

  $$\sum_{j=1}^{\sqrt{n}}\sum_{i=1}^{j-1}\dfrac{n}{j*(i+j)} [gcd(i,j)==1]$$

  然后我又傻眼了,复杂度迷人的东西啊会把我脑子弄得很乱的。

  直接枚举j,然后i那里分块,然后就是求[l,r]里面和j互质的数的个数。

  差分,先求[1,r]里面的,就是$\sum_{x=1}^{r}1[gcd(x,j)==1]$

  即$\sum_{d=1}^{r}\mu(d)*(r/d)$

  最后就是$\sum_{d=1}^{r}\mu(d)*(r/d-(l-1)/d)$

  枚举约数在前面$\sqrt{j}$枚举去了。。

  真的是暴力出奇迹了。。。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define Maxn 50010
#define LL long long bool vis[Maxn];
int pri[Maxn],pl,mu[Maxn]; int mymin(int x,int y) {return x<y?x:y;} void init()
{
memset(vis,,sizeof(vis));
pl=;mu[]=;
for(int i=;i<=Maxn;i++)
{
if(!vis[i]) pri[++pl]=i,vis[i]=,mu[i]=-;
for(int j=;j<=pl;j++)
{
if(i*pri[j]>Maxn) break;
vis[i*pri[j]]=;
if(i%pri[j]==) {mu[i*pri[j]]=;break;}
mu[i*pri[j]]=-mu[i];
}
}
} int sta[Maxn],sl; void div(int x)
{
sl=;
int i;
for(i=;i*i<x;i++)
{
if(x%i==) sta[++sl]=i,sta[++sl]=x/i;
}
if(i*i==x) sta[++sl]=i;
} int gcd(int a,int b)
{
if(b==) return a;
return gcd(b,a%b);
} int main()
{
int n;
scanf("%d",&n);
init();
LL ans=;
int sq=(int)(sqrt((double)n));
for(int i=;i<=sq;i++)
{
div(i);
for(int j=;j<i;)
{
int x=n/i/(i+j),r;if(x==) break;
r=mymin(i-,n/x/i-i);
for(int k=;k<=sl;k++)
{
ans+=mu[sta[k]]*(r/sta[k]-(j-)/sta[k])*x;
}
j=r+;
}
}
printf("%lld\n",ans);
return ;
}

2017-04-06 15:50:26

【BZOJ 2671】 2671: Calc (数论,莫比乌斯反演)的更多相关文章

  1. BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛

    题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其 ...

  2. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  3. 【BZOJ2671】Calc(莫比乌斯反演)

    [BZOJ2671]Calc 题面 BZOJ 给出N,统计满足下面条件的数对(a,b)的个数: 1.\(1\le a\lt b\le N\) 2.\(a+b\)整除\(a*b\) 我竟然粘了题面!!! ...

  4. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  5. 【BZOJ4176】Lucas的数论 莫比乌斯反演

    [BZOJ4176]Lucas的数论 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)) ...

  6. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  7. BZOJ 1114 Number theory(莫比乌斯反演+预处理)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , ...

  8. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...

  9. 51Nod1675 序列变换 数论 莫比乌斯反演

    原文http://www.cnblogs.com/zhouzhendong/p/8665675.html 题目传送门 - 51Nod1675 题意 给定序列$a,b$,让你求满足$\gcd(x,y)= ...

  10. UOJ#62. 【UR #5】怎样跑得更快 数论 莫比乌斯反演

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ62.html 题解 太久没更博客了,该拯救我的博客了. $$\sum_{1\leq j \leq n} \ ...

随机推荐

  1. Redis实战(五)CentOS 7上搭建Redis集群

    高可用Redis(十二):Redis Cluster https://www.cnblogs.com/renpingsheng/p/9862485.html https://www.cnblogs.c ...

  2. c++ virtual总结

    virtual-关键字用于修饰成员函数时,有以下特性 1.用于修饰的基类的成员函数,被修饰的基类成员函数-其派生类的同名成员函数也默认带有virtual 关键字2.当virtual 用于修饰析构函数( ...

  3. 【洛谷 P2120】 [ZJOI2007]仓库建设(斜率优化)

    题目链接 斜率优化+1,好吧不水分了. 玩具装箱那题以后再做,当作复习吧. \(f[i]=f[j]-(sum[i]-sum[j])*dis[i]+p[i]\) \(f[j]=-dis[i]*sum[j ...

  4. 2017ACM暑期多校联合训练 - Team 6 1008 HDU 6103 Kirinriki (模拟 尺取法)

    题目链接 Problem Description We define the distance of two strings A and B with same length n is disA,B= ...

  5. 牛客网习题剑指offer之数值的整数次方

    分析: 要考虑到exponent为0和负数的情况. 如果base是0并且exponent是负数的时候呢?那就发生除0的情况了. AC代码: public class Solution { public ...

  6. Skipping 'Android SDK Tools, revision 24.0.2'; it depends on 'Android SDK Platform-tools, revision 20' which was not installed.

    前几天,同事问我eclipse android sdk怎么不能更新. 更新界面是显示(mirrors.neusoft.edu.cn:80),但是不能更新. 问题描述如下: URL not found: ...

  7. Mutex, semaphore, spinlock的深度解析

    Mutex是一把钥匙,一个人拿了就可进入一个房间,出来的时候把钥匙交给队列的第一个.一般的用法是用于串行化对critical section代码的访问,保证这段代码不会被并行的运行. Semaphor ...

  8. ProxySQL(MGR)部署故障:'sys.gr_member_routing_candidate_status' doesn't exist

    ProxySQL(MGR) 故障排查: 故障现象:runtime_mysql_servers节点状态offline_hostgroup(本案例为15) 日志关键信息: [WARNING] Group ...

  9. react native系列 - 从零开始构建

    从零开始构建第一步,当然是从hello world开始,第一课我们没什么代码都不写,只用生成的代码来打包apk.为什么一开始就要学会打包,因为如果连打包都不会,以后做好了也没用.学会了打包,才能让我们 ...

  10. Lynx以纯文本的形式下载网页

    Lynx是一款基于命令行的web浏览器 [root@test88 ~]# yum install lynx -y [root@test88 ~]# lynx www.baidu.com 以纯文本的形式 ...