POJ 2019 Cornfields [二维RMQ]
Cornfields
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 7963 | Accepted: 3822 |
Description
FJ has, at great expense, surveyed his square farm of N x N hectares (1 <= N <= 250). Each hectare has an integer elevation (0 <= elevation <= 250) associated with it.
FJ will present your program with the elevations and a set of K (1 <= K <= 100,000) queries of the form "in this B x B submatrix, what is the maximum and minimum elevation?". The integer B (1 <= B <= N) is the size of one edge of the square cornfield and is a constant for every inquiry. Help FJ find the best place to put his cornfield.
Input
* Lines 2..N+1: Each line contains N space-separated integers. Line 2 represents row 1; line 3 represents row 2, etc. The first integer on each line represents column 1; the second integer represents column 2; etc.
* Lines N+2..N+K+1: Each line contains two space-separated integers representing a query. The first integer is the top row of the query; the second integer is the left column of the query. The integers are in the range 1..N-B+1.
Output
Sample Input
5 3 1
5 1 2 6 3
1 3 5 2 7
7 2 4 6 1
9 9 8 6 5
0 6 9 3 9
1 2
Sample Output
5
Source
分析:
二维$RMQ$模板题。
就是模板,但是卡空间是真恶心。。。卡了一个小时。
Code:
//It is made by HolseLee on 4th Sep 2018
//POJ 2019
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N=;
int mi[N][N][][];
int ma[N][N][][]; void ready(int n)
{
for(int i=; (<<i)<=n; ++i)
for(int j=; (<<j)<=n; ++j) {
if( i== && j== ) continue;
for(int line=; line+(<<i)-<=n; ++line)
for(int ray=; ray+(<<j)-<=n; ++ray) {
if( i ) {
mi[line][ray][i][j]=min(mi[line][ray][i-][j],mi[line+(<<(i-))][ray][i-][j]);
ma[line][ray][i][j]=max(ma[line][ray][i-][j],ma[line+(<<(i-))][ray][i-][j]);
} else {
mi[line][ray][i][j]=min(mi[line][ray][i][j-],mi[line][ray+(<<(j-))][i][j-]);
ma[line][ray][i][j]=max(ma[line][ray][i][j-],ma[line][ray+(<<(j-))][i][j-]);
}
}
}
} int quary(int x,int y,int X,int Y)
{
int kx=,ky=,m1,m2,m3,m4,minn,maxx;
while( (<<(kx+))<=X-x+ ) kx++;
while( (<<(ky+))<=Y-y+ ) ky++; minn=min(min(mi[x][y][kx][ky],mi[X-(<<kx)+][Y-(<<ky)+][kx][ky]),min(mi[X-(<<kx)+][y][kx][ky],mi[x][Y-(<<ky)+][kx][ky])); maxx=max(max(ma[x][y][kx][ky],ma[X-(<<kx)+][Y-(<<ky)+][kx][ky]),max(ma[X-(<<kx)+][y][kx][ky],ma[x][Y-(<<ky)+][kx][ky])); return maxx-minn;
} int main()
{
int n,B,m;
while( scanf("%d%d%d",&n,&B,&m)== && n && B &&m ) {
int x,y;
for(int i=; i<=n; ++i)
for(int j=; j<=n; ++j) {
scanf("%d",&x);
mi[i][j][][]=ma[i][j][][]=x;
}
ready(n);
while( m-- ) {
scanf("%d%d",&x,&y);
int ans=quary(x,y,x+B-,y+B-);
printf("%d\n",ans);
}
}
return ;
}
POJ 2019 Cornfields [二维RMQ]的更多相关文章
- POJ 2019 Cornfields 二维线段树的初始化与最值查询
模板到不行.. 连更新都没有.. .存个模板. 理解留到小结的时候再写. #include <algorithm> #include <iostream> #include & ...
- [poj2019]Cornfields(二维RMQ)
题意:给你一个n*n的矩阵,让你从中圈定一个小矩阵,其大小为b*b,有q个询问,每次询问告诉你小矩阵的左上角,求小矩阵内的最大值和最小值的差. 解题关键:二维st表模板题. 预处理复杂度:$O({n^ ...
- POJ 2019 Cornfields (二维RMQ)
Cornfields Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 4911 Accepted: 2392 Descri ...
- [POJ 2019] Cornfields
Cornfields Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5516 Accepted: 2714 Descri ...
- poj2019 二维RMQ裸题
Cornfields Time Limit: 1000MS Memory Limit: 30000K Total Submissions:8623 Accepted: 4100 Descrip ...
- hdu2888 二维RMQ
Check Corners Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- hduacm 2888 ----二维rmq
http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题 直接用二维rmq 读入数据时比较坑爹 cin 会超时 #include <cstdio& ...
- hdu 2888 二维RMQ模板题
Check Corners Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- HDU 2888 Check Corners (模板题)【二维RMQ】
<题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...
随机推荐
- Vue.js随笔三(npm init webpack my-project指令安装失败解决方案)
如果没有安装淘宝给的镜像就先安装一下,指令如下,对!就是如此简单: npm install -g cnpm -registry=https://registry.npm.taobao.org 首先输入 ...
- Java设计模式の责任链模式
在阎宏博士的<JAVA与模式>一书中开头是这样描述责任链(Chain of Responsibility)模式的: 责任链模式是一种对象的行为模式.在责任链模式里,很多对象由每一个对象对其 ...
- eclipse常用快捷键大全 (转)
Eclipse中10个最有用的快捷键组合 一个Eclipse骨灰级开发者总结了他认为最有用但又不太为人所知的快捷键组合.通过这些组合可以更加容易的浏览源代码,使得整体的开发效率和质量得到提升. ...
- Python进行数据分析—可视化之seaborn
安装seaborn,可以使用 pip: pip install seaborn 也可以使用 conda: conda install seaborn 一个简单的箱线图: import numpy as ...
- Vue中使用vux的配置
一.根据vux文档直接安装,无需手动配置 npm install vue-cli -g // 如果还没安装 vue init airyland/vux2 my-project // 创建名为 my-p ...
- java学习笔记记录
Java内存模型: Java虚拟机规范中将Java运行时数据分为六种. 1.程序计数器:是一个数据结构,用于保存当前正常执行的程序的内存地址.Java虚拟机的多线程就是通过线程轮流切换并分配处理器时间 ...
- NYOJ 1012 RMQ with Shifts (线段树)
题目链接 In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each q ...
- 去掉input获取focus时的边框
贴图,问题如下: 尽管已经设置输入框的border为none,当输入框focus时扔会出现浏览器自带的边框 解决方法,添加如下样式即可,.fs_input为输入框样式 ---------------- ...
- Django【设计】同功能不同实现模式的兼容性
需求: 当我们采集硬件信息时,客户端可以有多种方式,具体方式取决于客户机,CMDB项目中,我们有三种方式可选,AGENT/SSH/SALT,根据客户机具体情况和“SALT>>SSH> ...
- SVMtrain的参数c和g的优化
SVMtrain的参数c和g的优化 在svm训练过程中,需要对惩罚参数c和核函数的参数g进行优化,选取最好的参数 知道测试集标签的情况下 是让两个参数c和g在某一范围内取离散值,然后,取测试集分类准确 ...