1006(6038)

就是对a,b分别求循环节,先统计一下b中所有长度循环节的出现次数,再对a求循环节时只要满足: a的循环节长度 % b的循环节长度=0,那么这个b的循环节就可以计入答案,尼玛只要是倍数就可以阿,比赛的时候死命想以为只有长度相同或者b的长度为1才能计算贡献,简直弱智。加了一个for就对了

/** @Date    : 2017-07-25 13:22:13
* @FileName: 1006.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL __int64
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const LL mod = 1e9 + 7;
LL a[N];
LL b[N];
bool visa[N];
bool visb[N];
LL cnta[N];
LL cntb[N];
int main()
{
LL n, m;
LL acnt;
int icase = 0;
while(~scanf("%I64d%I64d", &n, &m))
{
MMF(visa);
MMF(visb);
MMF(cnta);
MMF(cntb);
for(int i = 0; i < n; i++)
scanf("%I64d", a + i);
for(int j = 0; j < m; j++)
scanf("%I64d", b + j); for(int i = 0; i < m; i++)
{
if(!visb[i])
{
visb[i] = 1;
LL np = b[i];
LL c = 1;
while(!visb[np])
{
visb[np] = 1;
np = b[np];
++c;
}
cntb[c]++;
}
} LL ans = 1;
for(int i = 0; i < n; i++)
{
if(!visa[i])
{
visa[i] = 1;
LL np = a[i];
LL c = 1;
while(!visa[np])
{
visa[np] = 1;
np = a[np];
++c;
}
cnta[c]++;
////
LL tmp = 0;
for(int j = 1; j <= m; j++)
{
if(c % j == 0)
if(cntb[j])
tmp = (tmp + (j * cntb[j]) % mod) % mod;
}
//if(cntb[1] && c != 1)
// tmp = (tmp + cntb[1]) % mod;
//cout << c << " ~"<< c*cntb[c] <<"~" << cntb[1]<< endl;
ans = (ans * tmp + mod) % mod;
}
}
while(ans < 0)
ans+=mod;
printf("Case #%d: %I64d\n", ++icase, (ans + mod) % mod);
}
return 0;
}

1012(6044)

给出n个区间$l_i$,$r_i$,要求每个$\min{(l_i,r_i)} = p_i$,问能够构成合法情况,且其中的$p_i$大小关系不同的方案有几种。首先我们考虑一个区间$[l_i, r_i]$,如果它的左边界$l_i<i$,那么显然意味着$p_i$左边$i-l_i$个数与右边$r_{i}-i$个数的相对大小是不确定的(因为被$p_i$截断,后续区间的左边界必定不会小于i),而且其后的区间可以不再考虑左边的这些数。那么,我们dfs区间,每次把区间分为两部分$(L, i - 1)$,$(i+1, R)$,其中,一个区间的贡献的情况为$C_{r_{i}-l_{i}}^{i - l_{i}}$,注意判断当前区间是否合法(存在)。这题题目提示还要读入优化的外挂...我不会只能网上找个模板了..

/** @Date    : 2017-07-25 16:24:31
* @FileName: 1012 读入优化 组合.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e6+20;
const double eps = 1e-8;
const LL mod = 1e9 + 7; LL inv[N];
LL fac[N]; void init()
{
fac[0] = fac[1] = 1;
inv[0] = inv[1] = 1;
for(int i = 2; i < N; i++)
{
fac[i] = fac[i - 1] * i % mod;
inv[i] = (mod - mod / i) * inv[mod % i] % mod;
}
for(int i = 1; i < N; i++)
(inv[i] *= inv[i - 1]) %= mod;
} LL C(LL n, LL k)
{
LL ans = 0;
if(k > n)
return 0;
ans = fac[n] * inv[k] % mod * inv[n - k] % mod;
return ans;
} struct yuu
{
LL l, r;
yuu(){}
yuu(LL _l, LL _r):l(_l),r(_r){}
bool operator <(const yuu &b) const
{
if(l != b.l)
return l < b.l;
return r < b.r;
}
}a[N]; map<yuu, LL>q; LL dfs(LL l, LL r)
{
LL ans = 1;
if(l > r)
return 1;
yuu tmp;
tmp.l = l, tmp.r = r;
LL p = q[tmp];
if(p == 0)
return 0;
else if(l == r)
return 1;
ans = ans * C(r - l, p - l) % mod;
LL x = dfs(l, p - 1) % mod;
LL y = dfs(p + 1, r) % mod;
if(!x || !y)
return 0;
ans = (ans * x % mod * y % mod + mod) % mod;
return ans;
}
/////
inline char nc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int fre(LL &x){
char ch=nc();
if(ch == EOF)
return -1;
x = 0;
while(!(ch>='0'&&ch<='9')) ch=nc();
while(ch>='0'&&ch<='9') x = x*10 + ch - 48, ch = nc();
return 1;
}
/////
int main()
{
init();
int icase = 0;
LL n;
while(/*~scanf("%lld", &n)*/~fre(n))
{
for(int i = 0; i < n; i++)
/*scanf("%lld", &a[i].l);*/ fre(a[i].l);
for(int i = 0; i < n; i++)
/*scanf("%lld", &a[i].r);*/ fre(a[i].r);
q.clear();
for(int i = 0; i < n; i++)
{
q[a[i]] = i + 1;
}
LL ans = dfs(1, n);
printf("Case #%d: %lld\n", ++icase, ans);
}
return 0;
}

2017 Multi-University Training Contest - Team 1的更多相关文章

  1. 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  2. 2017 Multi-University Training Contest - Team 9 1004&&HDU 6164 Dying Light【数学+模拟】

    Dying Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  3. 2017 Multi-University Training Contest - Team 9 1003&&HDU 6163 CSGO【计算几何】

    CSGO Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  4. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  5. 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】

    Big binary tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】

    Colorful Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  7. 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】

    Function Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  8. 2017 Multi-University Training Contest - Team 1 1002&&HDU 6034 Balala Power!【字符串,贪心+排序】

    Balala Power! Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  9. 2017 Multi-University Training Contest - Team 1 1011&&HDU 6043 KazaQ's Socks【规律题,数学,水】

    KazaQ's Socks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  10. 2017 Multi-University Training Contest - Team 1 1001&&HDU 6033 Add More Zero【签到题,数学,水】

    Add More Zero Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

随机推荐

  1. c# 导入第三方插件(例如pdf控件),莫名有时候成功有时候出错

    问题情境: 正如标题所述: 解决办法: 怀疑是adobe acrobat 9 pro安装文件出错:重新安装,成功. 在这过程中,尝试过福听阅读器,adobe reader等,均正常. 注:1.第三方的 ...

  2. “来用”Beta版使用说明

    补发Beta版使用说明.Beta版与alpha版相比去掉了计算器,界面上没有太大变化. 1引言 1 .1编写目的 针对我们发布的Beta版本做出安装和使用说明,使参与内测的人员及用户了解软件的使用方法 ...

  3. 基础系列(1)—— NET框架及C#语言

    一.在.NET之前的编程世界 C#语言是在微软公司的.NET框架上开发程序而设计的,首先作者给大家纠正了一下C#的正确发音:See Sharp (一) 20世纪90年代末的Windows编程 这时大多 ...

  4. 【IdentityServer4文档】- 使用客户端凭据保护 API

    使用客户端凭据保护 API quickstart 介绍了使用 IdentityServer 保护 API 的最基本场景. 接下来的场景,我们将定义一个 API 和一个想要访问它的客户端. 客户端将在 ...

  5. 第7章 监听器Listener

    Listener概述 Listener的使用 使用Listener需要实现相应的Listener接口. public class SessionListenerTest implements Http ...

  6. MySQL 查询缓存机制(MySQL数据库调优)

    查询缓存机制:缓存的是查询语句的整个查询结果,是一个完整的select语句的缓存结果 哪些查询可能不会被缓存 :查询中包含UDF.存储函数.用户自定义变量.临时表.mysql库中系统表.或者包含列级别 ...

  7. Web服务器负载均衡的几种方案 : DNS轮询

    本篇主要讲一下最简单的方案——DNS轮询. DNS轮询 大多域名注册商都支持多条A记录 的解析,其实这就是DNS轮询 ,DNS 服务器 将解析请求按照A记录 的顺序,逐一分配到不同的IP上,这样就完成 ...

  8. 虚拟机中安装 centOS,本地安装 SSH 连接 - 02

    先进入 centOS 中,查询虚拟机的 IP 地址: 双击打开 SSH 可视化客户端: 点击 Connect 需要输入之前那个[无论如何都要使用]的密码. 密码在[centOS - 01]里面设置过, ...

  9. 第154天:canvas基础(一)

    一.canvas简介 ​ <canvas> 是 HTML5 新增的,一个可以使用脚本(通常为JavaScript)在其中绘制图像的 HTML 元素.它可以用来制作照片集或者制作简单(也不是 ...

  10. bzoj2699 更新

    题意 对于一个数列A[1..N],一种寻找最大值的方法是:依次枚举A[2]到A[N],如果A[i]比当前的A[1]值要大,那么就令A[1]=A[i],最后A[1]为所求最大值.假设所有数都在范围[1, ...