地址:http://codeforces.com/contest/801/problem/D

题目:

D. Volatile Kite
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given a convex polygon P with n distinct vertices p1, p2, ..., pn. Vertex pi has coordinates (xi, yi) in the 2D plane. These vertices are listed in clockwise order.

You can choose a real number D and move each vertex of the polygon a distance of at most D from their original positions.

Find the maximum value of D such that no matter how you move the vertices, the polygon does not intersect itself and stays convex.

Input

The first line has one integer n (4 ≤ n ≤ 1 000) — the number of vertices.

The next n lines contain the coordinates of the vertices. Line i contains two integers xi and yi ( - 109 ≤ xi, yi ≤ 109) — the coordinates of the i-th vertex. These points are guaranteed to be given in clockwise order, and will form a strictly convex polygon (in particular, no three consecutive points lie on the same straight line).

Output

Print one real number D, which is the maximum real number such that no matter how you move the vertices, the polygon stays convex.

Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely, let's assume that your answer is a and the answer of the jury is b. The checker program will consider your answer correct if .

Examples
input
4
0 0
0 1
1 1
1 0
output
0.3535533906
input
6
5 0
10 0
12 -4
10 -8
5 -8
3 -4
output
1.0000000000
Note

Here is a picture of the first sample

Here is an example of making the polygon non-convex.

This is not an optimal solution, since the maximum distance we moved one point is  ≈ 0.4242640687, whereas we can make it non-convex by only moving each point a distance of at most  ≈ 0.3535533906.

思路:这题看起来很复杂,但是看下样例一的图后会发现一个结论:

  在相邻的三个点a,b,c中,能移动的最大距离d就是b到直线ac的距离的一半。

  证明:当d大于一半时,凸包会被破坏。

     当d小于一半时,凸包仍然存在(即可以继续移动)

  

  所以贴个求点到直线的模板,然后扫一遍所有点,求出所有可移动距离的最大值中的最小值即可。

  (完整代码模板我博客有

 #include <bits/stdc++.h>

 using namespace std;

 #define MP make_pair
#define PB push_back
typedef long long LL;
typedef pair<int,int> PII;
const double eps=1e-;
const double pi=acos(-1.0);
const int K=1e6+;
const int mod=1e9+; //点
class Point
{
public:
double x, y; Point(){}
Point(double x, double y):x(x),y(y){} bool operator < (const Point &_se) const
{
return x<_se.x || (x==_se.x && y<_se.y);
}
/*******判断ta与tb的大小关系*******/
static int sgn(double ta,double tb)
{
if(fabs(ta-tb)<eps)return ;
if(ta<tb) return -;
return ;
}
static double xmult(const Point &po, const Point &ps, const Point &pe)
{
return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y);
}
friend Point operator + (const Point &_st,const Point &_se)
{
return Point(_st.x + _se.x, _st.y + _se.y);
}
friend Point operator - (const Point &_st,const Point &_se)
{
return Point(_st.x - _se.x, _st.y - _se.y);
}
//点位置相同(double类型)
bool operator == (const Point &_off) const
{
return Point::sgn(x, _off.x) == && Point::sgn(y, _off.y) == ;
}
//点位置不同(double类型)
bool operator != (const Point &_Off) const
{
return ((*this) == _Off) == false;
}
//两点间距离的平方
static double dis2(const Point &_st,const Point &_se)
{
return (_st.x - _se.x) * (_st.x - _se.x) + (_st.y - _se.y) * (_st.y - _se.y);
}
//两点间距离
static double dis(const Point &_st, const Point &_se)
{
return sqrt((_st.x - _se.x) * (_st.x - _se.x) + (_st.y - _se.y) * (_st.y - _se.y));
}
};
//两点表示的向量
class Line
{
public:
Point s, e;//两点表示,起点[s],终点[e]
double a, b, c;//一般式,ax+by+c=0 Line(){}
Line(const Point &s, const Point &e):s(s),e(e){}
Line(double _a,double _b,double _c):a(_a),b(_b),c(_c){} //向量与点的叉乘,参数:点[_Off]
//[点相对向量位置判断]
double operator /(const Point &_Off) const
{
return (_Off.y - s.y) * (e.x - s.x) - (_Off.x - s.x) * (e.y - s.y);
}
//向量与向量的叉乘,参数:向量[_Off]
friend double operator /(const Line &_st,const Line &_se)
{
return (_st.e.x - _st.s.x) * (_se.e.y - _se.s.y) - (_st.e.y - _st.s.y) * (_se.e.x - _se.s.x);
}
friend double operator *(const Line &_st,const Line &_se)
{
return (_st.e.x - _st.s.x) * (_se.e.x - _se.s.x) - (_st.e.y - _st.s.y) * (_se.e.y - _se.s.y);
}
//从两点表示转换为一般表示
//a=y2-y1,b=x1-x2,c=x2*y1-x1*y2
bool pton()
{
a = e.y - s.y;
b = s.x - e.x;
c = e.x * s.y - e.y * s.x;
return true;
} //-----------点和直线(向量)-----------
//点在向量左边(右边的小于号改成大于号即可,在对应直线上则加上=号)
//参数:点[_Off],向量[_Ori]
friend bool operator<(const Point &_Off, const Line &_Ori)
{
return (_Ori.e.y - _Ori.s.y) * (_Off.x - _Ori.s.x)
< (_Off.y - _Ori.s.y) * (_Ori.e.x - _Ori.s.x);
} //点在直线上,参数:点[_Off]
bool lhas(const Point &_Off) const
{
return Point::sgn((*this) / _Off, ) == ;
}
//点在线段上,参数:点[_Off]
bool shas(const Point &_Off) const
{
return lhas(_Off)
&& Point::sgn(_Off.x - min(s.x, e.x), ) > && Point::sgn(_Off.x - max(s.x, e.x), ) <
&& Point::sgn(_Off.y - min(s.y, e.y), ) > && Point::sgn(_Off.y - max(s.y, e.y), ) < ;
} //点到直线/线段的距离
//参数: 点[_Off], 是否是线段[isSegment](默认为直线)
double dis(const Point &_Off, bool isSegment = false)
{
///化为一般式
pton(); //到直线垂足的距离
double td = (a * _Off.x + b * _Off.y + c) / sqrt(a * a + b * b); //如果是线段判断垂足
if(isSegment)
{
double xp = (b * b * _Off.x - a * b * _Off.y - a * c) / ( a * a + b * b);
double yp = (-a * b * _Off.x + a * a * _Off.y - b * c) / (a * a + b * b);
double xb = max(s.x, e.x);
double yb = max(s.y, e.y);
double xs = s.x + e.x - xb;
double ys = s.y + e.y - yb;
if(xp > xb + eps || xp < xs - eps || yp > yb + eps || yp < ys - eps)
td = min(Point::dis(_Off,s), Point::dis(_Off,e));
} return fabs(td);
}
}; int n;
Point pt[K];
Line ta;
double ans=1e10;
int main(void)
{
cin>>n;
for(int i=;i<=n;i++)
scanf("%lf%lf",&pt[i].x,&pt[i].y);
for(int i=;i<=;i++)
pt[i+n]=pt[i];
for(int i=;i<=n;i++)
{
ta.s=pt[i],ta.e=pt[i+];
ans=min(ans,ta.dis(pt[i+])/2.0);
}
printf("%.8f\n",ans);
return ;
}

Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2) D. Volatile Kite的更多相关文章

  1. Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2)(A.思维题,B.思维题)

    A. Vicious Keyboard time limit per test:2 seconds memory limit per test:256 megabytes input:standard ...

  2. Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2) C Voltage Keepsake

    地址:http://codeforces.com/contest/801/problem/C 题目: C. Voltage Keepsake time limit per test 2 seconds ...

  3. Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2) 题解【ABCDE】

    A. Vicious Keyboard 题意:给你一个字符串,里面只会包含VK,这两种字符,然后你可以改变一个字符,你要求VK这个字串出现的次数最多. 题解:数据范围很小,暴力枚举改变哪个字符,然后c ...

  4. Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2)

    A 每次可以换一个或不换,暴力枚举位置即可 B 模拟 C 二分答案.. 边界可以优化r=totb/(tota-p),二分可以直接(r-l>=EPS,EPS不要太小,合适就好),也可以直接限定二分 ...

  5. Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2) A B C D 暴力 水 二分 几何

    A. Vicious Keyboard time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  6. Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) 菜鸡只会ABC!

    Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) 全场题解 菜鸡只会A+B+C,呈上题解: A. Bear and ...

  7. Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) C. Bear and Different Names 贪心

    C. Bear and Different Names 题目连接: http://codeforces.com/contest/791/problem/C Description In the arm ...

  8. Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) B - Bear and Friendship Condition 水题

    B. Bear and Friendship Condition 题目连接: http://codeforces.com/contest/791/problem/B Description Bear ...

  9. 【树形dp】Codeforces Round #405 (rated, Div. 1, based on VK Cup 2017 Round 1) B. Bear and Tree Jumps

    我们要统计的答案是sigma([L/K]),L为路径的长度,中括号表示上取整. [L/K]化简一下就是(L+f(L,K))/K,f(L,K)表示长度为L的路径要想达到K的整数倍,还要加上多少. 于是, ...

随机推荐

  1. 表达式树在LINQ动态查询

    动态构建表达式树,最佳实践版,很实用! public class FilterCollection : Collection<IList<Filter>> { public F ...

  2. asp.net 动态添加多个用户控件

    动态添加多个相同用户控件,并使每个用户控件获取不同的内容. 用户控件代码: 代码WebControls using System; using System.Collections.Generic;  ...

  3. ios 从URL中截取所包含的参数,并且以字典的形式返回和参数字典转URL

    //字典转链接(参数) - (NSString *)keyValueStringWithDict:(NSDictionary *)dict { if (dict == nil) { return ni ...

  4. 模板,BFS

    #include <stdio.h> #include <string.h> #include <queue> using namespace std; struc ...

  5. 编程之美 set 9 字符串移位包含问题

    题目 给定字符串 s1 和 s2, 要求判定 s2能否能够被通过 s1 做循环移位得到的字符包含. s1 = AABCD, s2 = CDAA 返回 true. 给定 s1 = ABCD 和 s2 = ...

  6. 移动端form表单

    始终绑定submit事件 不单独的对[提交]按钮绑定click事件,对整个表单绑定submit提交事件,这样可以让整个表单内的文本框获得Enter提交的VIP待遇,并且在移动端中可以让文本框聚焦时键盘 ...

  7. 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

    [BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...

  8. Map<String, String>的数据处理以及ListView的适配器

    Map<String, String> map = new HashMap<String, String>(); map.put("key1", " ...

  9. Arduino开发版学习计划--直流电机

    代码来源:http://www.cnblogs.com/starsnow/p/4579547.html // --------------------------------------------- ...

  10. PS学习笔记 1---- 光和色的关系(上)

    在HSB模式中,H(hues)表示色相,S(saturation)表示饱和度,B(brightness)表示亮度. HSB模式对应的媒介是人眼.HSB模式中S和B呈现的数值越高,饱和度明度越高,页面色 ...