SFM学习
摘自李翠http://www.cnblogs.com/serser/p/6598621.html
SFM
1、相机模型,内参数和外参数矩阵,相机标定;
2、极线约束和本征矩阵;特征点提取与匹配;提取到的特征点计算本征矩阵(五对以上的点)findEssentialMat(),需啊要点对,焦距参数,cx,cy参数等;
3、分解本征矩阵,获取相对变换R和T: int pass_count = recoverPose(E, p1, p2, R, T, focal_length, principle_point, mask);
4、现在已经知道了两个相机之间的变换矩阵R和T,还有每一对匹配点的坐标。三维重建就是通过这些已知信息还原匹配点在空间当中的坐标.用三角化重建三维模型;proj1和proj2分别为跟R和T相关的3*4矩阵;
//三角化重建 triangulatePoints(proj1, proj2, p1, p2, structure);
//××××××××××××××××××××××多目三位重建××××××××××××××××××××
5、求第三个相机的变换矩阵:
5.1最简单的想法,就是沿用双目重建的方法,即在第三幅图像和第一幅图像之间提取特征点,然后调用findEssentialMat和recoverPose。那么加入第四幅、第五幅,乃至更多呢?随着图像数量的增加,新加入的图像与第一幅图像的差异可能越来越大,特征点的提取变得异常困难,这时就不能再沿用双目重建的方法了。
5.2 那么能不能用新加入的图像和相邻图像进行特征匹配呢?比如第三幅与第二幅匹配,第四幅与第三幅匹配,以此类推。当然可以,但是这时就不能继续使用findEssentialMat和recoverPose来求取相机的变换矩阵了,因为这两个函数求取的是相对变换,比如相机三到相机二的变换,而我们需要的是相机三到相机一的变换。有人说,既然知道相机二到相机一的变换,又知道相机到三到相机二的变换,不就能求出相机三到相机一的变换吗?实际上,通过这种方式,你只能求出相机三到相机一的旋转变换(旋转矩阵R),而他们之间的位移向量T,是无法求出的。这是因为上面两个函数求出的位移向量,都是单位向量,丢失了相机之间位移的比例关系。
5.3我们要怎么解决这些问题?现在请出本文的主角——solvePnP和solvePnPRansac.根据OpenCV的官方解释,该函数根据空间中的点与图像中的点的对应关系,求解相机在空间中的位置。也就是说,我知道一些空间当中点的坐标,还知道这些点在图像中的像素坐标,那么solvePnP就可以告诉我相机在空间当中的坐标。solvePnP和solvePnPRansac所实现的功能相同,只不过后者使用了随机一致性采样,使其对噪声更鲁棒,本文使用后者。有这么好的函数,怎么用于我们的三维重建呢?首先,使用双目重建的方法,对头两幅图像进行重建,这样就得到了一些空间中的点,加入第三幅图像后,使其与第二幅图像进行特征匹配,这些匹配点中,肯定有一部分也是图像二与图像一之间的匹配点,也就是说,这些匹配点中有一部分的空间坐标是已知的,同时又知道这些点在第三幅图像中的像素坐标,嗯,solvePnP所需的信息都有了,自然第三个相机的空间位置就求出来了。由于空间点的坐标都是世界坐标系下的(即第一个相机的坐标系),所以由solvePnP求出的相机位置也是世界坐标系下的,即相机三到相机一的变换矩阵.
6、加入更多图像
通过上面的方法得到相机三的变换矩阵后,就可以使用上一篇文章提到的triangulatePoints方法将图像三和图像二之间的匹配点三角化,得到其空间坐标。为了使之后的图像仍能使用以上方法求解变换矩阵,我们还需要将新得到的空间点和之前的三维点云融合。已经存在的空间点,就没必要再添加了,只添加在图像二和三之间匹配,但在图像一和图像三中没有匹配的点。如此反复。
7、多目重建的累积误差解决?BA方法,如何求解BA?总体思想是使用梯度下降,比如高斯-牛顿迭代、Levenberg-Marquardt算法等
SFM学习的更多相关文章
- SFM学习记录(二)
分析生成文件 在.nvm.cmvs/00/下有:(也可能是其他数字) models/option-0000.ply:是生成的密集点云模型 txt:文件夹下(还没弄明白ν_v) visualize:保存 ...
- SFM(structure from motion)学习记录(一)
visualSFM用法 添加图片 "File->Open Multi Images". 一次添加多幅图片 "SfM->Load NView Match&quo ...
- javaweb学习总结(二十四)——jsp传统标签开发
一.标签技术的API 1.1.标签技术的API类继承关系 二.标签API简单介绍 2.1.JspTag接口 JspTag接口是所有自定义标签的父接口,它是JSP2.0中新定义的一个标记接口,没有任何属 ...
- (转) 实时SLAM的未来及与深度学习的比较
首页 视界智尚 算法技术 每日技术 来打我呀 注册 实时SLAM的未来及与深度学习的比较 The Future of Real-Time SLAM and “Deep Learni ...
- 从零开始一起学习SLAM | SLAM有什么用?
SLAM是 Simultaneous Localization And Mapping的 英文首字母组合,一般翻译为:同时定位与建图.同时定位与地图构建. 「同时定位与地图构建」这几个词,乍一听起来非 ...
- (转)Maven学习总结(八)——使用Maven构建多模块项目
孤傲苍狼只为成功找方法,不为失败找借口! Maven学习总结(八)——使用Maven构建多模块项目 在平时的Javaweb项目开发中为了便于后期的维护,我们一般会进行分层开发,最常见的就是分为doma ...
- (转)Maven学习总结(七)——eclipse中使用Maven创建Web项目
孤傲苍狼只为成功找方法,不为失败找借口! Maven学习总结(七)——eclipse中使用Maven创建Web项目 一.创建Web项目 1.1 选择建立Maven Project 选择File -&g ...
- SSIS 学习之旅 数据同步
这一章 别人也有写过但是我觉得还是写写比较好.数据同步其实就是想仿照 数据库的发布订阅功能 第一章:SSIS 学习之旅 第一个SSIS 示例(一)(上) 第二章:SSIS 学习之旅 第一个SSIS 示 ...
- PMVS学习中学习c++
最近忙于PMVS算法的优化,在这个过程中把这个写下来.仿照已有PMVS源程序,给出自己的一个实现过程. 1.fstream的使用 2.c++中的初始化 3.new创建对象与不用new的区别 我们学 ...
随机推荐
- 用Python深入理解跳跃表原理及实现
最近看 Redis 的实现原理,其中讲到 Redis 中的有序数据结构是通过跳跃表来进行实现的.第一次听说跳跃表的概念,感到比较新奇,所以查了不少资料.其中,网上有部分文章是按照如下方式描述跳跃表的: ...
- 【转载】IntelliJ IDEA 2017常用快捷键
IntelliJ IDEA 是一款致力于提供给开发工程师沉浸式编程体验的IDE工具,所以在其中提供了很多方便高效的快捷键,一旦熟练掌握,整个开发的效率和体验将大大提升.本文就按照笔者自己日常开发时的使 ...
- JavaScript学习笔记(五)——类型、转换、相等、字符串
第六章 类型 相等 转换等 一.类型 1 typeof(); typeof是一个内置的JavaScript运算符,可用于探测其操作数的类型. 例: <script language=" ...
- centos7.2 apache开启.htaccess
打开httpd.conf(在那里? APACHE目录的CONF目录里面),用文本编纂器打开后,查找 (1) AllowOverride None 改为 AllowOverride All (2)去掉下 ...
- BZOJ 3489 A simple rmq problem 可持久化KDtree/二维线段树
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3489 题意概述: 给出一个序列,每次询问一个序列区间中仅出现了一次的数字最大是多少,如果 ...
- debian 安装kde
今天用最小安装安装了一台debian虚拟机,想要安装kde桌面,总是安装不上,使用语句 apt-get install kde apt-get install kde4 都试了,不行.最终查看debi ...
- Python_1
转载来源:http://www.cnblogs.com/wupeiqi/articles/4906230.html python内部执行过程如下: python解释器在加载 .py 文件中的代码时,会 ...
- android入门 — ProgressDialog/DatePickerDialog/TimePickerDialog
这三个Dialog都是AlertDialog的子类. ①DatePickerDialog 1.创建DatePickerDialog的实例: 2.通过Calendar类获得系统时间: 3.通过DateP ...
- [二叉查找树] 1115. Counting Nodes in a BST (30)
1115. Counting Nodes in a BST (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...
- CodeForces Round #527 (Div3) D2. Great Vova Wall (Version 2)
http://codeforces.com/contest/1092/problem/D2 Vova's family is building the Great Vova Wall (named b ...