题目链接:http://codeforces.com/gym/101775/problem/B

Aori is very careless so she is always making troubles. One day she does it again, with N big troubles! But this time she seems to be at ease because she has found M Inklings to take all the blames. Each trouble can be measured by a severity number ai. Each trouble needs at least one Inkling to take the blame, and each Inkling can help Aori to take the blame for exactly one trouble. If two or more Inklings take the same trouble, they will take this blame together and discuss how to divide this trouble into.. some trivial things.. to reduce the pressure on each Inkling, as long as the total severity on Inklings is equal to the severity of this trouble.

Inklings are so warm so that Aori wants to think a way to let the variance of severity on each Inkling to be minimal. Could you help Aori make her scapegoats?

Formally, the variance of variables is the expectation of the squared deviation of a variable from its mean:

Input
The first line of the input gives the number of test cases, T. T test cases follow.

For each test case, the first line contains two integers N and M, where N is the number of troubles, and M is the number of Inklings. The next line contains N integers a1, a2, ..., aN representing the severity of the troubles that Aori makes.

1 ≤ T ≤ 100.
1 ≤ N ≤ M ≤ 2 × 10^5.
1 ≤ ai ≤ 10000.
.

Output
For each test case, output one line containing "Case #x: y", where x is the test case number (starting from 1) and y is the minimal variance.

y will be considered correct if it is within an absolute or relative error of 10 - 8 of the correct answer.

Example
Input
3
3 6
1 2 3
5 10
5 6 7 8 9
6 6
1 1 4 5 1 4
Output
Case #1: 0.000000000000
Case #2: 0.400000000000
Case #3: 2.888888888889

Note
For the first sample, Aori can let one Inkling to take the first trouble's blame, two Inklings for the second, and three Inklings for the third. The severity on each Inkling is 1 unit, so their variance should be 0.

题意:

现在某人闯祸了,产生了 $N$ 个锅,每个锅有个严重点数,现在可以安排 $M$ 个替罪羊去背锅。

每个替罪羊最多只能背一个锅。若一只羊背一个锅,则该锅的严重点数全部算在它头上;若多只羊背同一个锅,则每个羊分到该锅的一部分的严重点数。

现在考虑一种安排方案,使得所有的身上的严重点数的方差最小。

题解:

先考虑上 $N$ 只羊一一对应地背 $N$ 个锅,剩下 $M-N$ 个替罪羊身上严重点数均为 $0$,当然这样并不是最优解。

应当把再剩下 $M-N$ 个替罪羊安排进 $N$ 个锅里分摊责任,使得方差减小。考虑贪心的思路,每次安排进去一只羊,都要使得方差减小最多。

考虑将新来的羊安排到某个任务,该任务严重点数为 $a[i]$,且原来的背锅羊数是 $num$,那么首先每个替罪羊分到的严重点数的平均数肯定是不变的 $\overline{X} = \frac{a[1]+ a[2]+ \cdots + a[n]}{m}$,因此它原本对方差的贡献为 $\frac{1}{m} \cdot num \cdot (\frac{a[i]}{num}-\overline{X})^2$。

而现在新加进去一个替罪羊,这个任务对方差的新的贡献为 $\frac{1}{m} \cdot (num+1) \cdot (\frac{a[i]}{num+1}-\overline{X})^2$。

显然,关键的差值就是 $\Delta = num \cdot (\frac{a[i]}{num}-\overline{X})^2 -(num+1) \cdot (\frac{a[i]}{num+1}-\overline{X})^2 = \frac{a[i]^2}{num \cdot (num+1)} - \overline{X}^2$,因此我们让每次挑一个任务让它的 $\Delta + \overline{X}^2 = \frac{a[i]^2}{num \cdot (num+1)}$ 最大就好了,这个可以用优先队列。

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2e5+;
const int eps=1e-;
int n,m;
int a[maxn];
struct Node{
int id;
int num;
Node(int _id,int _num) {
id=_id, num=_num;
}
inline double calc()const {
return a[id]*a[id]*1.0/num/(num+);
}
bool operator<(const Node& oth)const {
return this->calc() < oth.calc()+eps;
}
};
priority_queue<Node> Q;
int main()
{
int T;
cin>>T;
for(int kase=;kase<=T;kase++)
{
scanf("%d%d",&n,&m);
double aver=;
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
aver+=a[i];
Q.push(Node(i,));
}
aver/=m;
for(int rest=m-n;rest>;rest--)
{
Node now=Q.top(); Q.pop();
Q.push(Node(now.id,now.num+));
}
double ans=;
while(!Q.empty())
{
Node now=Q.top(); Q.pop();
ans+=now.num*pow(a[now.id]*1.0/now.num-aver,2.0);
}
ans/=m;
printf("Case #%d: %.9lf\n",kase,ans);
}
}

Gym 101775B - Scapegoat - [贪心+优先队列]的更多相关文章

  1. 【贪心】【堆】Gym - 101775B - Scapegoat

    题意:有n个事件,每个事件有一个严重程度,m个人(m>=n),你要让m个人去背锅,每个人只能背一个事件的锅,但是一个事件可以由很多人背.让你使得这m个人所承受的严重程度的方差最小化. 考虑一开始 ...

  2. hihoCoder 1309:任务分配 贪心 优先队列

    #1309 : 任务分配 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定 N 项任务的起至时间( S1, E1 ), ( S2, E2 ), ..., ( SN,  ...

  3. UVA 11134 - Fabled Rooks(贪心+优先队列)

    We would like to place  n  rooks, 1 ≤  n  ≤ 5000, on a  n×n  board subject to the following restrict ...

  4. C. Playlist Educational Codeforces Round 62 (Rated for Div. 2) 贪心+优先队列

    C. Playlist time limit per test 2 seconds memory limit per test 256 megabytes input standard input o ...

  5. HDU 6438 网络赛 Buy and Resell(贪心 + 优先队列)题解

    思路:维护一个递增队列,如果当天的w比队首大,那么我们给收益增加 w - q.top(),这里的意思可以理解为w对总收益的贡献而不是真正获利的具体数额,这样我们就能求出最大收益.注意一下,如果w对收益 ...

  6. 贪心+优先队列 HDOJ 5360 Hiking

    题目传送门 /* 题意:求邀请顺序使得去爬山的人最多,每个人有去的条件 贪心+优先队列:首先按照l和r从小到大排序,每一次将当前人数相同的被邀请者入队,那么只要能当前人数比最多人数条件小,该人能 被邀 ...

  7. [POJ1456]Supermarket(贪心 + 优先队列 || 并查集)

    传送门 1.贪心 + 优先队列 按照时间排序从前往后 很简单不多说 ——代码 #include <queue> #include <cstdio> #include <i ...

  8. Painting The Fence(贪心+优先队列)

    Painting The Fence(贪心+优先队列) 题目大意:给 m 种数字,一共 n 个,从前往后填,相同的数字最多 k 个在一起,输出构造方案,没有则输出"-1". 解题思 ...

  9. CF140C New Year Snowmen(贪心+优先队列)

    CF140C 贪心+优先队列 贪心策略:每次取出数量最多的三种球,合成一个答案,再把雪球数都-1再插回去,只要还剩下三种雪球就可以不断地合成 雪球数用优先队列维护 #include <bits/ ...

随机推荐

  1. Python操作redis系列之 列表(list) (五)(转)

    # -*- coding: utf-8 -*- import redis r =redis.Redis(host=") 1. Lpush 命令将一个或多个值插入到列表头部. 如果 key 不 ...

  2. SharePoint online 获取文件版本记录

    endpoint: _api/web/GetFileByServerRelativeUrl('/allDoc/xxx.pdf')/Versions 问题: 第一次使用,无论在本地还是o365上,都只返 ...

  3. FreeBie—免费设计师专用素材网

    FreeBie—免费设计师专用素材网 网站地址: https://freebiesupply.com/ 网站分类: 素材 浏览次数: 192 标签: 设计素材 Freebie Supply 是国外一家 ...

  4. Kettle实现数据抽取、转换、装入和加载数据-数据转移ETL工具

    原文地址:http://www.xue51.com/soft/5341.html Kettle是来自国外的一款开源的ETL工具,纯java编写,可以在Window.Linux.Unix上运行,绿色无需 ...

  5. DMA(直接存储器存取)

    DMA(Direct Memory Access) DMA(Direct Memory Access)即直接存储器存取,是一种快速传送数据的机制. 工作原理 DMA是指外部设备不通过CPU而直接与系统 ...

  6. php 删除cookie有效方法

      php 删除cookie有效方法关于删除cookie的说明开始----- bool setcookie ( string name [, string value [, int expire [, ...

  7. crawler_exa2

    优化中... #! /usr/bin/env python # -*- coding:utf-8 -*- # Author: Tdcqma ''' v17.0920.1401 基本功能实现,漏洞标题与 ...

  8. iis asp.net4.0注册

    asp.net4.0下载地址:https://download.microsoft.com/download/9/5/A/95A9616B-7A37-4AF6-BC36-D6EA96C8DAAE/do ...

  9. lombok自带的slfj使用方法

    1.pom.xml <dependency> <groupId>org.projectlombok</groupId> <artifactId>lomb ...

  10. 什么是SPU、SKU、ARPU

    这是一篇存档性笔记,我自己存档一下对这3个词的理解.如果你已经明了了这3个词的意思,请直接忽略之 首先,搞清楚商品与单品的区别.例如,iphone是一个单品,但是在淘宝上当很多商家同时出售这个产品的时 ...