题目大意:分块维护一个有 n 个数字的序列,有两种操作:区间加,区间查询小于某个数的元素个数。n <= 50000

预处理阶段:处理出块内元素的相对大小顺序(排序),时间复杂度为 \(O(nlogn)\)

查询阶段:区间加过程中每次重构的时间复杂度为 \(O(\sqrt n*log\sqrt n)\),查询过程中每次时间复杂度为 \(O(\sqrt n)\),一共 n 次操作。

因此,总时间复杂度为 \(O(n*logn+n*\sqrt n*log\sqrt n)\)

注:该题无法用树套树进行维护,树套树一般仅支持单点修改,平衡树区间修改操作会很慢。

分块比树套树优秀的地方在于维护的信息仅在块中处理即可,无需像树一样进行上传,即:无需考虑维护信息的区间合并性质。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=5e4+10;
const int maxb=800; inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} int n,m,a[maxn];
struct node{int l,r,add;}b[maxb];
int tot,bl[maxn];vector<int> v[maxb];
void make_block(){
tot=sqrt(n);
for(int i=1;i<=tot;i++)b[i].l=b[i-1].r+1,b[i].r=i*tot;
if(b[tot].r<n)++tot,b[tot].l=b[tot-1].r+1,b[tot].r=n;
for(int i=1;i<=tot;i++){
for(int j=b[i].l;j<=b[i].r;j++)bl[j]=i,v[i].push_back(a[j]);
sort(v[i].begin(),v[i].end());
}
}
inline void rebuild(int idx){
v[idx].clear();
for(int i=b[idx].l;i<=b[idx].r;i++)v[idx].push_back(a[i]);
sort(v[idx].begin(),v[idx].end());
}
void modify(int l,int r,int val){
int x=bl[l],y=bl[r];
if(x==y){
for(int i=l;i<=r;i++)a[i]+=val;
rebuild(x);
}else{
for(int i=x+1;i<=y-1;i++)b[i].add+=val;
for(int i=l;i<=b[x].r;i++)a[i]+=val;
for(int i=b[y].l;i<=r;i++)a[i]+=val;
rebuild(x),rebuild(y);
}
}
int query(int l,int r,int val){
int ans=0,x=bl[l],y=bl[r];
if(x==y){
for(int i=l;i<=r;i++)if(a[i]<val-b[x].add)++ans;
}else{
for(int i=x+1;i<=y-1;i++)ans+=lower_bound(v[i].begin(),v[i].end(),val-b[i].add)-v[i].begin();
for(int i=l;i<=b[x].r;i++)if(a[i]<val-b[x].add)++ans;
for(int i=b[y].l;i<=r;i++)if(a[i]<val-b[y].add)++ans;
}
return ans;
} int main(){
n=m=read();
for(int i=1;i<=n;i++)a[i]=read();
make_block();
while(m--){
int opt=read(),l=read(),r=read(),val=read();
if(opt==0)modify(l,r,val);
else if(opt==1)printf("%d\n",query(l,r,val*val));
}
return 0;
}

【LOJ#6278】数列分块2的更多相关文章

  1. LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)

    #6278. 数列分块入门 2 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 6   题目描述 给出 ...

  2. LOJ#6278. 数列分块入门 2

    在一个区间上进行操作,一种操作是某个小区间都加上c,另一个查找这个区间内大于c*c的数 我们可以另外开一个数组在保存a中的每个分块内的相对值,然后每次对a加值,并把a的值赋给b,不同的是b内的各个分块 ...

  3. LOJ 6278 数列分块入门2

    [题解] 分块.块内排序.块内二分出第一个大于等于c的数. #include<cstdio> #include<algorithm> #include<cmath> ...

  4. LOJ——#6277. 数列分块入门 1

    ~~推荐播客~~ 「分块」数列分块入门1 – 9 by hzwer 浅谈基础根号算法——分块 博主蒟蒻,有缘人可直接观摩以上大佬的博客... #6277. 数列分块入门 1 题目大意: 给出一个长为 ...

  5. #6278. 数列分块入门 2(询问区间内小于某个值 xx 的元素个数)

    题目链接:https://loj.ac/problem/6278 题目大意:中文题目 具体思路:数列分块模板题,对于更新的时候,我们通过一个辅助数组来进行,对于原始的数组,我们只是用来加减,然后这个辅 ...

  6. LOJ 6277-6280 数列分块入门 1-4

    数列分块是莫队分块的前置技能,练习一下 1.loj6277 给出一个长为n的数列,以及n个操作,操作涉及区间加法,单点查值. 直接分块+tag即可 #include <bits/stdc++.h ...

  7. LOJ #6285. 数列分块入门 9-分块(查询区间的最小众数)

    #6285. 数列分块入门 9 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给 ...

  8. LOJ #6284. 数列分块入门 8-分块(区间查询等于一个数c的元素,并将这个区间的所有元素改为c)

    #6284. 数列分块入门 8 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给出 ...

  9. LOJ #6283. 数列分块入门 7-分块(区间乘法、区间加法、单点查询)

    #6283. 数列分块入门 7 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给出 ...

  10. LOJ #6282. 数列分块入门 6-分块(单点插入、单点查询、数据随机生成)

    #6282. 数列分块入门 6 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 1   题目描述 给出 ...

随机推荐

  1. HTTP Error 500.22 - Internal Server Error 错误解决方案

    1. 首先进入IIS ,配置IIS 应用程序池的.Net Framework版本 2. 点击左侧应用程序池,再单机右侧设置,选择版本 3. 设置为经典模式 如若遇到以下错误: 解决方案:删除confi ...

  2. Gitlab备份和恢复操作记录

    前面已经介绍了Gitlab环境部署记录,这里简单说下Gitlab的备份和恢复操作记录: 1)Gitlab的备份目录路径设置 [root@code-server ~]# vim /etc/gitlab/ ...

  3. 作业20171123 beta-review 成绩

    申诉 对成绩有疑问或不同意见的同学,请在群里[@杨贵福]. 申诉时间截止2017年12月13日 17:00. 成绩 review NABCD-评论 SPEC-评论 bug found 答复 bugfi ...

  4. 安装Visual Studio 2013以及简单使用

    首先,在网上找到安装Visual Studio 2013的教程以及相关软件资源http://jingyan.baidu.com/article/09ea3ede3b2496c0afde3944.htm ...

  5. Pair Project1:电梯控制程序

    12061199 程刚  &&   12061204 黎柱金 一.结对编程的优缺点 结对编程相对于一个人的编程有更多的优点,缺点也有很大不同. 首先,优点: 结队可以让两人可以更好的协 ...

  6. [2019BUAA软件工程]结对编程感想

    结对编程感想 写在前面   本博客为笔者在完成软件工程结对编程任务后对于编程过程.最终得分的一些感想与经验分享.此外笔者还对于本课程的结对编程部分提出了一些建议. Tips Link 作业要求博客 2 ...

  7. Linux内核分析——第十八章 调试

    第十八章    调试 18.1 准备开始 1.在用户级的程序里,bug表现比较直接:在内核中却不清晰. 2.内核级开发的调试工作远比用户级开发艰难的多. 3.准备工作需要的是: (1)一个bug (2 ...

  8. Daily Scrum 12-25

    Meeting Minutes 针对设计师提出的问题完成了layout的微调: 讨论alpha测试反馈反映出的一些问题: 完成了代码的merge(与bing词典 1.5版本): Progress   ...

  9. JWT验证

    理解 JSON Web Token(JWT) 验证 JSON Web Token认证的操作指南 在本文中,我们将了解JSON Web Token的全部内容. 我们将从JWT的基本概念开始,然后查看其结 ...

  10. Delphi/XE2 使用TIdHttp控件下载Https协议服务器文件[转]

    之前的一篇博文详细描述了使用TIdhttp控件下载http协议的文件,在我项目的使用过程中发现对于下载Https协议中的文件与Http协议的文件不同,毕竟Https在HTTP协议基础上增加了SSL协议 ...