给定交易数据集,FP增长的第一步是计算项目频率并识别频繁项目。与为同样目的设计的类似Apriori的算法不同,FP增长的第二步使用后缀树(FP-tree)结构来编码事务,而不会显式生成候选集,生成的代价通常很高。第二步之后,可以从FP树中提取频繁项集。

import org.apache.spark.sql.SparkSession
import org.apache.spark.mllib.fpm.FPGrowth
import org.apache.spark.rdd.RDD val spark = SparkSession
.builder()
.appName("Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate() // For implicit conversions like converting RDDs to DataFrames
import spark.implicits._ val data = List(
"1,2,5",
"1,2,3,5",
"1,2").toDF("items")
data: org.apache.spark.sql.DataFrame = [items: string] // 注意每行,头部和尾部的[中括号
data.rdd.map { s => s.toString() }.collect().take(3)
res20: Array[String] = Array([1,2,5], [1,2,3,5], [1,2]) val transactions: RDD[Array[String]] = data.rdd.map {
s =>
val str = s.toString().drop(1).dropRight(1)
str.trim().split(",")
} val fpg = new FPGrowth().setMinSupport(0.5).setNumPartitions(8) val model = fpg.run(transactions) /* model.freqItemsets.collect().foreach { itemset =>
println(itemset.items.mkString("[", ",", "]") + ", " + itemset.freq)
}*/ val freqItemSets = model.freqItemsets.map { itemset =>
val items = itemset.items.mkString(",")
val freq = itemset.freq
(items, freq)
}.toDF("items", "freq")
freqItemSets: org.apache.spark.sql.DataFrame = [items: string, freq: bigint] freqItemSets.show
+-----+----+
|items|freq|
+-----+----+
| 1| 3|
| 2| 3|
| 2,1| 3|
| 5| 2|
| 5,2| 2|
|5,2,1| 2|
| 5,1| 2|
+-----+----+ val minConfidence = 0.6
minConfidence: Double = 0.6 /*model.generateAssociationRules(minConfidence).collect().foreach { rule =>
println(
rule.antecedent.mkString("[", ",", "]")
+ " => " + rule.consequent.mkString("[", ",", "]")
+ ", " + rule.confidence)
}*/ // 根据置信度生成关联规则
val Rules = model.generateAssociationRules(minConfidence)
Rules: org.apache.spark.rdd.RDD[org.apache.spark.mllib.fpm.AssociationRules.Rule[String]] = MapPartitionsRDD[129] at filter at AssociationRules.scala:80 val df = Rules.map { s =>
val L = s.antecedent.mkString(",")
val R = s.consequent.mkString(",")
val confidence = s.confidence
(L, R, confidence)
}.toDF("left_collect", "right_collect", "confidence")
df: org.apache.spark.sql.DataFrame = [left_collect: string, right_collect: string ... 1 more field] df.show
+------------+-------------+------------------+
|left_collect|right_collect| confidence|
+------------+-------------+------------------+
| 2| 5|0.6666666666666666|
| 2| 1| 1.0|
| 5,2| 1| 1.0|
| 5| 2| 1.0|
| 5| 1| 1.0|
| 1| 5|0.6666666666666666|
| 1| 2| 1.0|
| 2,1| 5|0.6666666666666666|
| 5,1| 2| 1.0|
+------------+-------------+------------------+

Spark FPGrowth (Frequent Pattern Mining)的更多相关文章

  1. 八、频繁模式挖掘Frequent Pattern Mining

    频繁模式挖掘(Frequent Pattern Mining): 频繁项集挖掘是通常是大规模数据分析的第一步,多年以来它都是数据挖掘领域的活跃研究主题.建议用户参考维基百科的association r ...

  2. Frequent Pattern 挖掘之一(Aprior算法)(转)

    数据挖掘中有一个很重要的应用,就是Frequent Pattern挖掘,翻译成中文就是频繁模式挖掘.这篇博客就想谈谈频繁模式挖掘相关的一些算法. 定义 何谓频繁模式挖掘呢?所谓频繁模式指的是在样本数据 ...

  3. Frequent Pattern 挖掘之二(FP Growth算法)

    Frequent Pattern 挖掘之二(FP Growth算法) FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断 ...

  4. 原创:协同过滤之spark FP-Growth树应用示例

    上一篇博客中,详细介绍了UserCF和ItemCF,ItemCF,就是通过用户的历史兴趣,把两个物品关联起来,这两个物品,可以有很高的相似度,也可以没有联系,比如经典的沃尔玛的啤酒尿布案例.通过Ite ...

  5. Frequent Pattern 挖掘之二(FP Growth算法)(转)

    FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结 ...

  6. Frequent Pattern (FP Growth算法)

    FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达 到这样的效果,它采用了一种简洁的数据 ...

  7. 论文总结(Frequent Itemsets Mining With Differential Privacy Over Large-Scale Data)

    一.论文目标:将差分隐私和频繁项集挖掘结合,主要针对大规模数据. 二.论文的整体思路: 1)预处理阶段: 对于大的数据集,进行采样得到采样数据集并计算频繁项集,估计样本数据集最大长度限制,然后再缩小源 ...

  8. Space Time Pattern Mining Tools(时空模式挖掘工具)

    时空模式挖掘工具 # Process: 局部异常值分析 arcpy.LocalOutlierAnalysis_stpm("", "", 输出要素, " ...

  9. 《Spark 官方文档》机器学习库(MLlib)指南

    spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分 ...

随机推荐

  1. py3 pymysql

    虽然大家可能在python2.x中用习惯了mysqldb,但是在python3.x中已经不支持那个组件了. 取而代之的是: import pymysql 所以,大家pip起来吧.另外,mysql官方出 ...

  2. JAVA自学笔记22

    JAVA自学笔记22 1.操作基本数据类型的流 DataInputStream DataOutputStream 数据输出流允许应用程序以适当方式将基本的Java数据类型写入输出流中.然后,应用程序可 ...

  3. python3 “POST data should be bytes or an iterable of bytes...”的解决方法

    urllib.parse.urlencode({}).encode(encoding='utf8') 参考了:dushu990

  4. 洛谷 P1162 填涂颜色

    题目链接:https://www.luogu.org/problemnew/show/P1162 题目描述由数字0组成的方阵中,有一任意形状闭合圈,闭合圈由数字1构成,围圈时只走上下左右4个方向.现要 ...

  5. Data Model for Message Receiver

    1. Physical Data Model 2. SQL Statements drop database MessageReceiver go /*======================== ...

  6. 【转载】SpringCloud-Eurek 心跳阈值说明

    在使用eureka过程中,查看监控界面,出现: EMERGENCY! EUREKA MAY BE INCORRECTLY CLAIMING INSTANCES ARE UP WHEN THEY'RE ...

  7. Elasticsearch模糊查询

    前缀查询 匹配包含具有指定前缀的项(not analyzed)的字段的文档.前缀查询对应 Lucene 的 PrefixQuery . 案例 GET /_search { "query&qu ...

  8. Unity StreamingMipmaps 简单测试

    StreamingMipmaps是Unity2018.2中加入的新功能,意指通过CPU控制,只加载部分Mipmap图片以节省更多的内存及显存空间. 我测试时遇到了问题,后来发现必须打包出来测才有效(注 ...

  9. return返回两个三元表达式的和,返回不正确,同样要注意在JavaScript中,也是如此

    public string b() { string b = ""; "; } public int c() { public string b() { string b ...

  10. tensorflow 笔记13:了解机器翻译,google NMT,Attention

    一.关于Attention,关于NMT 未完待续... 以google 的 nmt 代码引入 探讨下端到端: 项目地址:https://github.com/tensorflow/nmt 机器翻译算是 ...