来源poj1860

everal currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.

For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.

You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively.

Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations.

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3.

For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2.

Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4.

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0

1 2 1.00 1.00 1.00 1.00

2 3 1.10 1.00 1.10 1.00

Sample Output

YES

一直换下去,到了换过反而比之前少的时候就判断有没有比之前的钱多

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define pf printf
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<stack>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
const ll mod=1e9+100;
const double eps=1e-8;
using namespace std;
const double pi=acos(-1.0);
const int inf=0xfffffff;
const int N=105;
double dist[N],rate[N][N],cost[N][N];
int n,m,s,x,y;
double num,a1,b1,a2,b2;
struct edge
{
int b,e;
double rate,cost;
}v[N*2];
bool Bellman()
{
rep(i,1,n+1)
dist[i]=0;
dist[s]=num;
while(dist[s]<=num+eps)//比原有的多就可以跳出循环,没必要继续换钱
{
int temp=1;
rep(i,0,2*m)
{
double cas=(dist[v[i].b]-v[i].cost)*v[i].rate;//算能不能换钱,能的话可以换多少
if(cas>dist[v[i].e]+eps)//如果之前是没有钱的,就会变成这么多,如果换过了的,说明循环了一圈,如果没有比之前多,也就意味着通过这样换不能变多钱
{
temp=0;
dist[v[i].e]=cas;
}
}
if(temp)//到了不能变更多钱的时候,就比较现在拥有的钱和原来相比有没有更多
return dist[s]>num;
}
return true;
}
int main()
{
while(scanf("%d%d%d%lf",&n,&m,&s,&num)!=EOF)
{
rep(i,0,m)
{
cin>>x>>y>>a1>>b1>>a2>>b2;
v[i].b=x;v[i].e=y;v[i].rate=a1;v[i].cost=b1;
v[i+m].b=y;v[i+m].e=x;v[i+m].rate=a2;v[i+m].cost=b2;
}
if(Bellman())
cout<<"YES"<<endl;
else cout<<"NO"<<endl;
return 0;
}
return 0;
}

F - Currency Exchange的更多相关文章

  1. 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19881   Accepted: 711 ...

  2. Currency Exchange(判断是否有正环)

    Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16456   Accepted: 5732 Description Seve ...

  3. Currency Exchange 货币兑换 Bellman-Ford SPFA 判正权回路

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

  4. poj1860 Currency Exchange(spfa判断正环)

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

  5. Bellman_ford 算法 Currency Exchange POJ1860

    Bellman_ford算法用于寻找正环或者负环! 算法导论: 24.1 The Bellman-Ford algorithm The Bellman-Ford algorithm solves th ...

  6. Currency Exchange POJ1860

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

  7. poj - 1860 Currency Exchange Bellman-Ford 判断正环

    Currency Exchange POJ - 1860 题意: 有许多货币兑换点,每个兑换点仅支持两种货币的兑换,兑换有相应的汇率和手续费.你有s这个货币 V 个,问是否能通过合理地兑换货币,使得你 ...

  8. POJ 1860 Currency Exchange (Bellman-Ford)

    题目链接:POJ 1860 Description Several currency exchange points are working in our city. Let us suppose t ...

  9. POJ1860 Currency Exchange(bellman-ford)

    链接:http://poj.org/problem?id=1860 Currency Exchange Description Several currency exchange points are ...

随机推荐

  1. poj3061 Subsequence(尺取法)

    https://vjudge.net/problem/POJ-3061 尺取发,s和t不断推进的算法.因为每一轮s都推进1所以复杂度为O(n) #include<iostream> #in ...

  2. RealTek WiFi 模块 RTL8710AF RTL8711AF RTL8711AM RTL8195AM

    瑞昱 8710 是一个完整且自成体系的 WiFi 网络解决方案, 能够独立运行,也可以作为从机搭载于其他主机 MCU 运行. 瑞昱 8710 在搭载应用并作为设备中唯⼀的应⽤处理器时,能够直接从外接闪 ...

  3. Docker 安装和基础用法

    理解Docker(1):Docker 安装和基础用法 本系列文章将介绍Docker的有关知识: (1)Docker 安装及基本用法 (2)Docker 镜像 (3)Docker 容器的隔离性 - 使用 ...

  4. shell编程学习笔记(五):Shell中脚本的参数

    在执行Shell脚本的时候,可以在执行时带上参数,相当于传递参数给脚本,下面我们看一下怎么使用这个参数 以下蓝色字体部分为Linux命令,红色字体的内容为输出的内容: # cd /opt/script ...

  5. linux服务器挂掉自动重启脚本(转)

    实现原理主要是使用linux提供的crontab机制,定时查询服务器进程是否存在,如果宕机则执行我们预设的重启脚本. 首先我们要向crontab加入一个新任务 sudo crontab -e #进入编 ...

  6. MVP模式在Android中的使用

    转载了一篇博客.博客来自:http://www.liuling123.com/2015/12/mvp-pattern-android.html 觉得博主写的非常好 曾经在写项目的时候.没有过多考虑架构 ...

  7. 安全系列之CSRF初探

    前言 安全对于互联网的从业技术人员来讲,一直是接触或者实际使用掌握比较薄弱的一块,当然对于那些专项搞安全类的技术人员来讲除外. 接下来就来聊聊在互联网领域中常用的一些安全漏洞类型和一些防范手段,当然针 ...

  8. webstorm快捷键 webstorm keymap内置快捷键英文翻译、中英对照说明

    20160114参考网络上的快捷键,整理自己常用的: 查找/代替shift+shift 快速搜索所有文件,简便ctrl+shift+N 通过文件名快速查找工程内的文件(必记)ctrl+shift+al ...

  9. 【ThinkPHP】解析ThinkPHP5创建模块

    在根目录下有一个build.php文件,该文件是自动生成的,自动创建模块.build.php的文件内容如下: <?php return [ // 生成应用公共文件 '__file__' => ...

  10. Eclipse SVN clean up失败解决方法

    错误信息: 1.下载sqlite3.zip  (https://www.sqlite.org/2019/sqlite-tools-win32-x86-3270200.zip) 只需用到解压后的exe文 ...