题意:

。。。就是求体积交。。。

解析:

  把每一层z抽出来,计算面积交, 然后加起来即可。。!

去看一下 二维面积交的代码 再看看这个三维面积交的代码。。 down函数里 你发现了什么规律!!!

参考二维面积交:https://www.cnblogs.com/WTSRUVF/p/9274318.html

代码如下

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#define mem(a, b) memset(a, b, sizeof(a))
using namespace std;
const int maxn = , INF = 0x7fffffff;
typedef long long LL;
int X[maxn]; struct node{
int l, r, w;
int lx, rx, sum, lsum, llsum;
}Node[maxn]; struct edge{
int lxx, rxx, y, z1, z2;
int f;
}Edge[maxn*]; int cmp(edge a, edge b)
{
return a.y < b.y;
} void build(int k, int ll, int rr)
{
Node[k].l = ll, Node[k].r = rr;
Node[k].w = Node[k].sum = Node[k].lsum = Node[k].llsum = ;
Node[k].lx = X[ll];
Node[k].rx = X[rr];
if(ll + == rr) return;
int m = (ll + rr) / ;
build(k*, ll, m);
build(k*+, m, rr);
} void down(int k)
{
int len = Node[k].rx - Node[k].lx;
if(Node[k].w >= )
{
Node[k].sum = Node[k].lsum = Node[k].llsum = len;
}
else if(Node[k].w == )
{
Node[k].lsum = Node[k].llsum = len;
if(Node[k].l + == Node[k].r)
Node[k].sum = ;
else
Node[k].sum = Node[k*].lsum + Node[k*+].lsum;
}
else if(Node[k].w == )
{
Node[k].lsum = len;
if(Node[k].l + == Node[k].r)
Node[k].llsum = Node[k].sum = ;
else
{
Node[k].llsum = Node[k*].lsum + Node[k*+].lsum;
Node[k].sum = Node[k*].llsum + Node[k*+].llsum;
}
}
else
{
if(Node[k].l + == Node[k].r)
Node[k].sum = Node[k].lsum = Node[k].llsum = ;
else
{
Node[k].lsum = Node[k*].lsum + Node[k*+].lsum;
Node[k].llsum = Node[k*].llsum + Node[k*+].llsum;
Node[k].sum = Node[k*].sum + Node[k*+].sum;
}
} } void update(int k, edge e)
{
if(Node[k].lx == e.lxx && Node[k].rx == e.rxx)
{
Node[k].w += e.f;
down(k);
return;
}
if(e.rxx <= Node[k*].rx) update(k*, e);
else if(e.lxx >= Node[k*+].lx) update(k*+, e);
else
{
edge temp = e;
temp.rxx = Node[k*].rx;
update(k*, temp);
temp = e;
temp.lxx = Node[k*+].lx;
update(k*+, temp);
}
down(k);
} int main()
{
int T, kase = ;
scanf("%d",&T);
while(T--)
{
int n, cnt = ;
scanf("%d",&n);
for(int i=; i<n; i++)
{
int x1, y1, z1, x2, y2, z2;
scanf("%d%d%d%d%d%d", &x1, &y1, &z1, &x2, &y2, &z2);
Edge[++cnt].lxx = x1, Edge[cnt].rxx = x2, Edge[cnt].y = y1, Edge[cnt].f = , Edge[cnt].z1= z1, Edge[cnt].z2 = z2;
X[cnt] = x1;
Edge[++cnt].lxx = x1, Edge[cnt].rxx = x2, Edge[cnt].y = y2, Edge[cnt].f = -, Edge[cnt].z1= z1, Edge[cnt].z2 = z2;
X[cnt] = x2;
}
sort(Edge+, Edge+cnt+, cmp);
sort(X+, X+cnt+);
int m = unique(X+, X+cnt+) - (X+);
LL ret = ;
for(int i=-; i<=; i++)
{
build(, , m);
int ans = ;
edge line[maxn];
for(int j=; j<=cnt; j++)
{
if(Edge[j].z1 <= i && Edge[j].z2 > i)
line[++ans] = Edge[j];
}
for(int j=; j<ans; j++)
{
update(, line[j]);
ret += (LL)Node[].sum * (line[j+].y - line[j].y);
}
}
printf("Case %d: %lld\n",++kase,ret); } return ;
}

Get The Treasury HDU - 3642(扫描线求三维面积交。。体积交)的更多相关文章

  1. hdu 1542 扫描线求矩形面积的并

    很久没做线段树了 求矩形面积的并分析:1.矩形比较多,坐标也很大,所以横坐标需要离散化(纵坐标不需要),熟悉离散化后这个步骤不难,所以这里不详细讲解了,不明白的还请百度2.重点:扫描线法:假想有一条扫 ...

  2. HDU 1542"Atlantis"(线段树+扫描线求矩形面积并)

    传送门 •题意 给你 n 矩形,每个矩形给出你 $(x_1,y_1),(x_2,y_2)$ 分别表示这个矩形的左下角和右上角坐标: 让你求这 n 个矩形并的面积: 其中 $x \leq 10^{5} ...

  3. Get The Treasury HDU - 3642(体积扫描线)

    给出n个立方体,要你求这些立方体至少被覆盖三次的部分. 先把这个立方体的信息存在来,发现Z的范围不大,z范围是是[-500,500],所以我们可以先离散化,然后枚举Z, 然后对于每一段Z的区域内,在当 ...

  4. HDU 3642 扫描线(立方体体积并)

    Get The Treasury Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. Q - Get The Treasury - HDU 3642 (扫面线求体积)

    题意:求被三个或三个以上立方体重合的体积 分析:就是平面面积的加强,不过归根还是一样的,可以把z轴按照从小向大分区间N个,然后可以得到N个平面,用平面重复三次以上的在和高度计算体积. ******** ...

  6. hdu 1542&&poj 1151 Atlantis[线段树+扫描线求矩形面积的并]

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  7. HDU 3265 扫描线(矩形面积并变形)

    Posters Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  8. hdu1828 线段树扫描线求矩形面积的周长

    题意:       给你n个矩形,问你这n个矩形所围成的图形的周长是多少. 思路:       线段树的扫描线简单应用,这个题目我用的方法比较笨,就是扫描两次,上下扫描,求出多边形的上下边长和,然后同 ...

  9. hdu1542 线段树扫描线求矩形面积的并

    题意:       给你n个正方形,求出他们的所占面积有多大,重叠的部分只能算一次. 思路:       自己的第一道线段树扫描线题目,至于扫描线,最近会写一个总结,现在就不直接在这里写了,说下我的方 ...

随机推荐

  1. OK6410移植linux3.3.1

    本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 首先修改资源代码,进入arch/arm/mach-s3c64xx/目录,在这里我们使用mini6410的资源配置 ...

  2. 18-(基础入门篇)GPRS(Air202)拨打电话--(由于板子做修订,所以暂停更新)

    https://www.cnblogs.com/yangfengwu/p/9968883.html 这个直接用官方给的demo就可以 先睹为快 现在说个需求哈,是当初一个人给提出的需求 例如存入的号码 ...

  3. Luogu3350 ZJOI2016 旅行者 最短路、分治

    传送门 题意:给出一个$N \times M$的网格图,边有边权,$Q$组询问,每组询问$(x_1,y_1)$到$(x_2,y_2)$的最短路.$N \times M \leq 2 \times 10 ...

  4. [您有新的未分配科技点][BZOJ3545&BZOJ3551]克鲁斯卡尔重构树

    这次我们来搞一个很新奇的知识点:克鲁斯卡尔重构树.它也是一种图,是克鲁斯卡尔算法求最小生成树的升级版首先看下面一个问题:BZOJ3545 Peaks. 在Bytemountains有N座山峰,每座山峰 ...

  5. EZ 2018 06 02 NOIP2018 模拟赛(十七)

    这次的比赛是真心比较狗,我TM的写了30min的树剖ZZ地直接memset超时了 话说我既然想到差分就应该去写差分的啊! 好了不过这次Rank还挺高的,终于要打进前10了当然是假的了. 好了下面开始讲 ...

  6. JXOI2018简要题解

    JXOI2018简要题解 T1 排序问题 题意 九条可怜是一个热爱思考的女孩子. 九条可怜最近正在研究各种排序的性质,她发现了一种很有趣的排序方法: Gobo sort ! Gobo sort 的算法 ...

  7. Android 真机调试

    /************************摘抄*****************************/ 刚好遇到这个问题,在网上百度了一下,看到有人分享了引起该问题的几个原因: 1.手机设 ...

  8. iOS实时查看App运行日志

    前言: 本文讨论如何实时查看输出在console控制台的日志. 一.Xcode 通过Window->Devices打开devices界面,选择我们的手机,也能看到手机中运行的进程输出的日志.如图 ...

  9. Linux内核分析——进程的描述和进程的创建

    进程的描述和进程的创建 一. 进程的描述 (一)进程控制块PCB——task_struct 1.操作系统的三大管理功能包括: (1)进程管理 (2)内存管理 (3)文件系统 2.PCB task_st ...

  10. TCP报文格式详解

    TCP报文是TCP层传输的数据单元,也叫报文段. 1.端口号:用来标识同一台计算机的不同的应用进程. 1)源端口:源端口和IP地址的作用是标识报文的返回地址. 2)目的端口:端口指明接收方计算机上的应 ...