Codechef TAPAIR Counting the important pairs 随机化、树上差分
题意:给出一个$N$个点、$M$条边的无向连通图,求有多少组无序数对$(i,j)$满足:割掉第$i$条边与第$j$条边之后,图变为不连通。$N \leq 10^5 , M \leq 3 \times 10^5$
竟然随机化,歪果仁的思想好灵活qwq肯定是数据结构做多了
看起来很像割边,考虑$tarjan$,但是边三连通分量并不是很好实现,而且有很多特殊情况需要判断,所以我们考虑另外的算法
考虑$tarjan$时建出的一棵树。对于它来说,在一个端点在其下方、另一个端点在其上方的的返祖边可以成为它的依靠,因为割掉它,这一条依靠边可以代替它的功能。而对于一条返祖边来说,割掉对于树边是没有影响的,我们就定义它自己为自己的依靠。
这样每一条边都有自己的依靠集合。考虑两条依赖集合相同的边,将它们割掉之后,中间一段的点就会因为上下都没有额外的依靠而使得图不连通。而对于一条依赖集合为空的边(即割边),它选择任何边都可以加入贡献。
所以我们现在需要考虑如何给某一段边加入贡献。然后CC的题解给出的玄学办法是:随机化+树上差分+XOR
我们考虑将给一条返祖边定权值为一个$random$出来的值$t$,然后把所有依靠它的边的依靠集合异或上这个值,这个可以树上差分去做。这样所有的依靠集合就变成了一个数。然后我们判断两条边的依靠集合对应的数是否相等即可。
Because 2^64 is large enough comparing to the range of N and M, don't worry about the probability. :) You will get AC if you implemented correctly.——原题题解
然而我$rand() WA$了好几发qwq
如果随机数种子出了问题的话就看下面这种玄学rand好了
#include<bits/stdc++.h>
#define CC
using namespace std; inline int read(){
int a = ;
bool f = ;
char c = getchar();
while(c != EOF && !isdigit(c)){
if(c == '-')
f = ;
c = getchar();
}
while(c != EOF && isdigit(c)){
a = (a << ) + (a << ) + (c ^ '');
c = getchar();
}
return f ? -a : a;
} const int MAXN = ;
struct Edge{
int end , upEd;
}Ed[MAXN * ];
int head[MAXN] , num[MAXN] , dep[MAXN] , fa[MAXN] , N , cntEd , cnt;
unsigned long long point[MAXN] , forS[MAXN * ];
bool vis[MAXN]; #define ll unsigned long long
inline ll rp(){return (1ll*rand())^(1ll*rand())<<^(1ll*rand())<<^(1ll*rand())<<^(1ll*rand())<<;} inline void addEd(int a , int b){
Ed[++cntEd].end = b;
Ed[cntEd].upEd = head[a];
head[a] = cntEd;
} void dfs1(int x , int t){
fa[x] = t;
dep[x] = dep[fa[x]] + ;
vis[x] = ;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end])
dfs1(Ed[i].end , x);
else
if(dep[Ed[i].end] > dep[x]){
long long t = rp();
point[x] ^= t;
point[Ed[i].end] ^= t;
forS[++cnt] = t;
}
} void dfs2(int x){
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(fa[Ed[i].end] == x){
dfs2(Ed[i].end);
point[x] ^= point[Ed[i].end];
}
if(x != )
forS[++cnt] = point[x];
} int main(){
#ifdef CC
freopen("TAPAIR.in" , "r" , stdin);
freopen("TAPAIR.out" , "w" , stdout);
#endif N = read();
int M = read();
for(int i = ; i <= M ; i++){
int a = read() , b = read();
addEd(a , b);
addEd(b , a);
}
dfs1( , );
dfs2();
sort(forS + , forS + cnt + );
int p = ;
while(p <= cnt && forS[p] == )
p++;
long long ans = (p - ) * (long long)(p - ) / + (p - ) * (M - p + );
while(p <= cnt){
int beg = p;
while(p <= cnt && forS[p] == forS[beg])
p++;
ans += (long long)(p - beg) * (p - beg - ) / ;
}
cout << ans;
return ;
}
Codechef TAPAIR Counting the important pairs 随机化、树上差分的更多相关文章
- Counting The Important Pairs CodeChef - TAPAIR
https://vjudge.net/problem/CodeChef-TAPAIR 合法的删除方法: 第一种:桥边与其余任意边(1)桥*(桥-1)/2(两条桥边)(2)桥*(m-桥)(桥边+其他边) ...
- BZOJ3569 DZY Loves Chinese II(随机化+树上差分+线性基)
上一题的强制在线版.对图跑出一个dfs树,给非树边赋上随机权值,树边的权值为覆盖他的非树边权值的异或.这样如果某条树边和覆盖他的非树边都被割掉(即图不连通),他们的异或值就为0.每次对询问看有没有子集 ...
- Codechef Sad Pairs——圆方树+虚树+树上差分
SADPAIRS 删点不连通,点双,圆方树 非割点:没有影响 割点:子树DP一下 有不同颜色,所以建立虚树 在圆方树上dfs时候 如果当前点是割点 1.统计当前颜色虚树上的不连通点对,树形DP即可 2 ...
- [luogu P3128][USACO15DEC]Max Flow [LCA][树上差分]
题目描述 Farmer John has installed a new system of pipes to transport milk between the stalls in his b ...
- P3128 [USACO15DEC]最大流Max Flow(LCA+树上差分)
P3128 [USACO15DEC]最大流Max Flow 题目描述 Farmer John has installed a new system of pipes to transport mil ...
- [USACO15DEC]最大流Max Flow(树上差分)
题目描述: Farmer John has installed a new system of N−1N-1N−1 pipes to transport milk between the NNN st ...
- P3128 [USACO15DEC]最大流Max Flow (树上差分)
题目描述 Farmer John has installed a new system of N-1N−1 pipes to transport milk between the NN stalls ...
- 【BZOJ-4326】运输计划 树链剖分 + 树上差分 + 二分
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 703 Solved: 461[Submit][Status] ...
- 树上差分 (瞎bb) [树上差分][LCA]
做noip2015的运输计划写了好久好久写不出来 QwQ 于是先来瞎bb一下树上差分 混积分 树上差分有2个常用的功能: (1)记录从点i到i的父亲这条路径走过几次 (2)将每条路径(s,t ...
随机推荐
- Session Cookies随笔
1.对于Session而言 它是用来保存在服务端的信息,可以用来做登录验证,在后台保存有用信息. 一个浏览器访问一个网站,就是建立一个连接,连接信息是独立的,就是在该建立的连接内,保存到Session ...
- Hexo + Github 个人博客设置以及优化
原文地址: Hexo + Github 个人博客设置以及优化 一.博客设置 分类.标签云.关于等页面 在站点目录下分别执行: hexo new page "categories" ...
- SpringCloud+Feign环境下文件上传与form-data同时存在的解决办法(2)
书接上文. 上文中描述了如何在 SpringCloud+Feign环境下上传文件与form-data同时存在的解决办法,实践证明基本可行,但却会引入其他问题. 主要导致的后果是: 1. 无法与普通Fe ...
- 使用 WebStorm IDE 调试 Pomelo 应用程序
使用得心应手的IDE来开发应用程序,可以使我们的工作事半功倍.而调试则更可以让我们准确的定位BUG,发现问题.本文讲述如何使用 WebStorm 这个怪兽级JavaScript IDE来调试 Chat ...
- js计算两个日期的天数差值
js计算两个日期的天数差值 通过两个日期计算这两个日期之间的天数差值 /** * 计算天数差的函数,通用 * @param sDate1 * @param sDate2 * @returns {Num ...
- 关于解决JetBrains 激活问题
今天升级了下JetBrains 的一系列产品,安装后打开发现以前的激活失效了. 在网上看到网友们各类屏蔽和寻找服务器,尝试了下都不太方便. 最后去rover的个人博客看了下,很给力,总能跟上JetBr ...
- 3.5Python数据处理篇之Numpy系列(五)---numpy文件的存取
目录 目录: (一)以文本形式存取 1.说明: 2.语法解释: 3.实例(以.csv文件为例) 4.效果展示 (二)以任意的形式存取 1.说明: 2.语法解释: 3.实例(以.bat二进制文件为例) ...
- January 12th, 2018 Week 02nd Friday
Nothing behind me, everything ahead of me, as is ever so on the road. 我的身后空空荡荡,整个世界都在前方,这就是在路上. That ...
- MATLAB三维作图——隐函数
MATLAB三维作图——隐函数 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 对于三维隐函数,没有显式表达式,无法通过Matlab现成的3-D画图函数 ...
- Java设计模式之十三 ---- 观察者模式和空对象模式
前言 在上一篇中我们学习了行为型模式的备忘录模式(Memento Pattern)和状态模式(Memento Pattern).本篇则来学习下行为型模式的最后两个模式,观察者模式(Observer P ...