【BZOJ5286】[HNOI2018]转盘(线段树)

题面

BZOJ

洛谷

题解

很妙的一道题目啊。(全世界除了我这题都有40分,就我是一个状压选手

首先来发现一些性质,我们走一圈一定不会更差。

为啥呢?我们反过来看,我们可以钦定一个时间\(T\),然后从这个时刻出发,每个时刻可以向前走一步或者停留于此,而每个物品有一个消失时间,过了这个时间你还没有到这个位置你就凉了。

那么我们发现我们显然只需要走一圈就可以拿到所有的东西,如果走一圈还有东西拿不到那你走再多圈也拿不到。

那么现在我们要做的就是让钦定的时间\(T\)最短,那么我们又发现了,你显然不会停,停下来显然不优,因为我们现在要做的就是走一圈,既然所有东西都会消失,那么停下来干啥啊。

行,那么我们再正回来,也就是两个性质:只要我们开始走了,我们就不会停,要停也只会在起点停留若干时间之后一直向前走。另外一个是,我们只会走一圈,走回起点的前一个格子就结束了。

所以,不难发现我们的答案就是停留时间加上\(n-1\)。

考虑为啥要停留,证明有一个物品出现的时间很晚,我们必须要在所有物品出现以后才能拿。

那么这个出发时间是什么呢?假设物品的位置是\(j\),出发点是\(i\),\(j\ge i\),物品出现的时间是\(t\)。假设我们等待的时间是\(x\)。那么显然\(x+j-i\ge t_j\),移项可以得到\(x\ge t_j-j+i\),也就是\(x=max(j-i+t_j)\),写得好看点就是\(x=max(t_j-j+i)\)。

那么我们要求的答案就是\((n-1)+min_{i=1}^nmax_{j=i}^{n+n}t_j-j+i\)

为什么要到\(n+n\)我们破环成链之后再原数组后面再接了一份。至于为什么不是到\(i+n\)是因为\(i+n+1\)到\(n+n\)这一段一定不会出现最大值。

现在考虑这个东西怎么维护就好了。

不难发现可能的最大值一定是一个关于\(t_j-j\)的单调栈。维护单调栈可以参考楼房重建那题。

大致的做法是,令\(mx\)表示区间的\(t_j-j\)的最大值。\(ans\)表示区间的答案。

考虑如何合并两个区间,这个东西是一个后缀区间的单调栈,所有右区间的值是直接拿过来用的。

考虑左区间接过来的答案,我们记录当前的右区间的最值,在左区间上面进行二分,找到最后一个大于最值的位置,那么单调栈我们就一直了,那么答案只需要沿着二分区间一路取\(max\)就可以了。

时间复杂度两个\(log\)。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 200200
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,typ,T[MAX],lans;
int t[MAX<<2],mx[MAX<<2];
int Query(int now,int l,int r,int x)
{
if(l==r)return l+max(x,mx[now]);
int mid=(l+r)>>1;
if(mx[rson]>=x)return min(t[now],Query(rson,mid+1,r,x));
return min(Query(lson,l,mid,x),mid+1+x);
}
void pushup(int now,int l,int r)
{
int mid=(l+r)>>1;
t[now]=Query(lson,l,mid,mx[rson]);
mx[now]=max(mx[lson],mx[rson]);
}
void Build(int now,int l,int r)
{
if(l==r){t[now]=T[l];mx[now]=T[l]-l;return;}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
pushup(now,l,r);
}
void Modify(int now,int l,int r,int p)
{
if(l==r){t[now]=T[l];mx[now]=T[l]-l;return;}
int mid=(l+r)>>1;
if(p<=mid)Modify(lson,l,mid,p);
else Modify(rson,mid+1,r,p);
pushup(now,l,r);
}
int main()
{
n=read();m=read();typ=read();
for(int i=1;i<=n;++i)T[i]=T[i+n]=read();
Build(1,1,n+n);printf("%d\n",lans=t[1]+n-1);
while(m--)
{
int x=read(),y=read();if(typ)x^=lans,y^=lans;
T[x]=T[x+n]=y;Modify(1,1,n+n,x);Modify(1,1,n+n,x+n);
printf("%d\n",lans=t[1]+n-1);
}
return 0;
}

【BZOJ5286】[HNOI2018]转盘(线段树)的更多相关文章

  1. BZOJ5286: [Hnoi2018]转盘 (线段树)

    题意 给你绕成一圈的物品共 \(n\) 个 , 然后从其中一个开始选 , 每次有两种操作 , 一是继续选择当前物品 , 二是选择这个后一个物品 . 选择后一个物品要求当前的时刻大于后一个的 \(T_i ...

  2. BZOJ.5286.[AHOI/HNOI2018]转盘(线段树)

    BZOJ LOJ 洛谷 如果从\(1\)开始,把每个时间\(t_i\)减去\(i\),答案取决于\(\max\{t_i-i\}\).记取得最大值的位置是\(p\),答案是\(t_p+1+n-1-p=\ ...

  3. [HNOI/AHOI2018]转盘(线段树优化单调)

    gugu  bz lei了lei了,事独流体毒瘤题 一句话题意:任选一个点开始,每个时刻向前走一步或者站着不动 问实现每一个点都在$T_i$之后被访问到的最短时间 Step 1 该题可证: 最优方案必 ...

  4. 洛谷P4425 [HNOI/AHOI2018]转盘(线段树)

    题意 题目链接 Sol 首先猜一个结论:对于每次询问,枚举一个起点然后不断等到某个点出现时才走到下一个点一定是最优的. 证明不会,考场上拍了3w组没错应该就是对的吧... 首先把数组倍长一下方便枚举起 ...

  5. bzoj5286 [Hnoi2018]转盘

    题目描述: bz luogu 题解: 看了半个晚上终于明白了. 首先最优决策一定有:在起始点停留一段时间然后一直前进. 解释网上有很多,在这里不赘述了. (由于是环,先把$T$数组倍长.) 首先基于决 ...

  6. [BZOJ5286][洛谷P4425][HNOI2018]转盘(线段树)

    5286: [Hnoi2018]转盘 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 15  Solved: 11[Submit][Status][Di ...

  7. BZOJ5286 HNOI/AHOI2018转盘(分块/线段树)

    显然最优走法是先一直停在初始位置然后一次性走完一圈.将序列倍长后,相当于找一个长度为n的区间[l,l+n),使其中ti+l+n-1-i的最大值最小.容易发现ti-i>ti+n-(i+n),所以也 ...

  8. [HNOI2018]转盘[结论+线段树]

    题意 题目链接 分析 首先要发现一个结论:最优决策一定存在一种 先在出发点停留之后走一圈 的情况,可以考虑如下证明: 如果要停留的话一定在出发点停留,这样后面的位置更容易取到. 走超过两圈的情况都可以 ...

  9. 洛谷P4425 转盘 [HNOI/AHOI2018] 线段树+单调栈

    正解:线段树+单调栈 解题报告: 传送门! 1551又是一道灵巧连题意都麻油看懂的题,,,,所以先解释一下题意好了,,,, 给定一个n元环 可以从0时刻开始从任一位置出发 每次可以选择向前走一步或者在 ...

随机推荐

  1. MySql 数据库移植记录

    在使用长文本时,SqlServer 在以下情况下工作正常 [Property("CContent", ColumnType = "StringClob", Le ...

  2. xml解析 使用dom4j操作xml

     使用dom4j操作xml 1 导入 dom4j,的jar包   2 指定要解析的XML文件 SAXReader sr=new SAXReader(); Document document= sr.r ...

  3. Spring学习日志之纯Java配置的MVC框架搭建

    依赖引入 <dependencies> <dependency> <groupId>javax.servlet</groupId> <artifa ...

  4. Mybatis中 collection 和 association 的区别?

    public class A{ private B b1; private List<B> b2;} 在映射b1属性时用association标签,(一对一的关系) 映射b2时用colle ...

  5. 身在上海的她,该不该继续"坚持"前端开发?

    作者:13 GitHub:https://github.com/ZHENFENG13 版权声明:本文为原创文章,未经允许不得转载. 一 对于目前的IT行业,我实在不想她还没在这个行业中站稳脚跟就开始有 ...

  6. asp.net mvc接收安卓post的json字符串

    筛选器: using System; using System.Collections.Generic; using System.Linq; using System.Web; using Syst ...

  7. Webpack 2 视频教程 004 - Webpack 初体验

    原文发表于我的技术博客 这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲 ...

  8. Pupet自动化管理环境部署记录

    废话不多说了,下面记录下Puppet在Centos下的部署过程: puppet是什么puppet是一种基于ruby语言开发的Lnux.Unix.windows平台的集中配置管理系统.它使用自有的pup ...

  9. 浅谈JS的作用域链(一)

    JS的执行环境 执行环境(Execution context,EC)或执行上下文,是JS中一个极为重要的概念. 在JavaScript中有三种代码运行环境: Global Code JavaScrip ...

  10. MSA微服务

    https://github.com/das2017?tab=repositories https://github.com/icsharpcode/ILSpy/releases LayerDemo ...