Leetcode 70.爬楼梯 By Python
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
思路
基本的动态规划问题,对于第n级台阶来说,有2种方法,1是到第n-1级,然后爬一个台阶;2是到第n-2个台阶,然后爬2个台阶,可以得出动态规划递推式:
$F(n) = F(n-1)+F(n-2)$
\(n=1\)的时候为1;\(n=2\)的时候为2
代码
class Solution(object):
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
if n==1:
return 1
elif n==2:
return 2
else:
tmp = [1,2]
for i in range(2,n):
tmp.append(tmp[i-1] + tmp[i-2])
return tmp[-1]
Leetcode 70.爬楼梯 By Python的更多相关文章
- LeetCode 70. 爬楼梯(Climbing Stairs)
70. 爬楼梯 70. Climbing Stairs 题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意: 给定 ...
- LeetCode 70 - 爬楼梯 - [递推+滚动优化]
假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2输出: 2解释: 有两种方 ...
- [每日一题2020.06.14]leetcode #70 爬楼梯 斐波那契数列 记忆化搜索 递推通项公式
题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, ...
- 力扣(LeetCode)70. 爬楼梯
假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两 ...
- 【LeetCode】70. 爬楼梯
爬楼梯 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意: 给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...
- Leetcode题目70.爬楼梯(动态规划+递归-简单)
题目描述: 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 ...
- LeetCode 题解 | 70. 爬楼梯
假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两 ...
- leetcode刷题-70爬楼梯
题目 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 思路 最开始使用的是回溯的方法,但是时间效 ...
- 力扣—climbing stairs(爬楼梯) python实现
题目描述: 中文: 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 英文: You are cl ...
随机推荐
- Unexpected error from external database driver (1)
当尝试把Excel导入SQL时,发生此异常: Unexpected error from external database driver (1). 在网上查找到一个解决方法,网址http://dat ...
- 【SCOI2015】小凸想跑步
题面 题解 推波柿子: 设点\(A(x_a, y_a), B(x_b, y_b), C(x_c, y_c), D(x_d, y_d), P(x, y)\) \(\vec{a} = (x_b - x_a ...
- springboot 读取 yml 配置的几种方式
前言:在springboot 项目中一般默认的配置文件是application.properties,但是实际项目中我们一般会使用application.yml 文件,下面就介绍一下在springbo ...
- Windows 窗体中的事件顺序
来自:https://docs.microsoft.com/zh-cn/dotnet/framework/winforms/order-of-events-in-windows-forms 对于依次处 ...
- SqlBulkCopy简单封装,让批量插入更方便
关于 SqlServer 批量插入的方式,前段时间也有大神给出了好几种批量插入的方式及对比测试(http://www.cnblogs.com/jiekzou/p/6145550.html),估计大家也 ...
- 我的devops实践经验分享一二
前言 随着系统越来越大,开发人员.站点.服务器越来越多,微服务化推进,......等等原因,实现自动化的devops越来越有必要. 当然,真实的原因是,在团队组建之初就预见到了这些问题,所以从一开始就 ...
- Tomcat通过Memcached实现session共享的完整部署记录
对于web应用集群的技术实现而言,最大的难点就是:如何能在集群中的多个节点之间保持数据的一致性,会话(Session)信息是这些数据中最重要的一块.要实现这一点, 大体上有两种方式:一种是把所有Ses ...
- 容斥原理I
普利斯记号 以下以"人"代指受条件约束的元素. \(K(x)\)表示刚好\(x\)人满足条件的方案数. \(S(x)\)表示至少\(x\)人满足条件的方案数. \(C(x)\)表示 ...
- Week 1 工程表格
PSP2.1 Personal Software Process Stages Time Planning 计划 · Estimate · 估计这个任务需要多少时间 6h30min Developme ...
- JavaScript中的cookie
cookie本身没什么可介绍的,但是cookie在JavaScript中,有很多需要注意的 首先,cookie在JavaScript中,是window.document对象的一个属性,所以访问cook ...