【Luogu4921】情侣?给我烧了!(组合计数)

题面

洛谷

题解

很有意思的一道题目。

直接容斥?怎么样都要一个平方复杂度了。

既然是恰好\(k\)对,那么我们直接来做:

首先枚举\(k\)对人出来\(\displaystyle {n\choose k}\),然后枚\(k\)排座位出来\(\displaystyle {n\choose k}\),这些人间的顺序关系\(k!\),然后这些人可以左右交换\(2^{k}\)。

好的,现在的问题转化为了剩下\(n-k\)对人,两两之间不能坐在一排,求方案数。

首先这\(n-k\)对人的顺序提前算好\((n-k)!\),然后左右顺序忽视掉\(2^{n-k}\)。

假装\(n\)对人完全错开的方案数是\(f(n)\)。

类似错排问题,然而并不是错排问题。类似错排问题的递推公式的想法,每次加入最新的一组。

那么当前这一组随便和前面哪一排找个人互换就好了,一共有两种交换方法。所以这一部分的贡献是\((n-1)*2*2*2*f(n-1)\)。

还有特殊情况就是原本换的那组两个人在一排,现在和这一排强制交换,有两种交换方法。那么这部分的贡献就是\((n-1)*2*f(n-2)\)。

那么转移凑合一下就是\(f(n)=2(n-1)(f(n-1)+f(n-2))\)。

再把答案式写一下:

\[Ans_k=2^n{n\choose k}^2k!(n-k)!f(n-k)
\]

这样子预处理\(f\)之后单次的复杂度为\(O(n)\)。

不过我还看到了一种很有意思的方法。

设\(f[i][j]\)表示\(i\)对情侣中恰好有\(j\)对坐在一起的方案数,\(g[i]\)表示\(i\)对情侣都不坐在一起的方案数。

那么\(\displaystyle f[n][k]={n\choose k} A_n^k2^k*g[n-k]\)

那么反过来\(\displaystyle g[n]=(2n)!-\sum_{i=1}^n f[n][i]\)

这样子是\(O(n^2)\)的,感觉很有意思的方法。

代码是前面那种方法

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1010
#define MOD 998244353
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,f[MAX],jc[MAX],jv[MAX],inv[MAX],bin[MAX];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
int T=read();jc[0]=jv[0]=inv[0]=inv[1]=f[0]=bin[0]=1;
for(int i=1;i<MAX;++i)f[i]=2ll*(i-1)*(f[i-1]+f[i-2])%MOD;
for(int i=2;i<MAX;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<MAX;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<MAX;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<MAX;++i)bin[i]=2ll*bin[i-1]%MOD;
while(T--)
{
n=read();
for(int i=0;i<=n;++i)
printf("%lld\n",1ll*bin[n]*C(n,i)%MOD*C(n,i)%MOD*jc[n-i]%MOD*jc[i]%MOD*f[n-i]%MOD);
}
return 0;
}

【Luogu4921】情侣?给我烧了!(组合计数)的更多相关文章

  1. 【Luogu4931】情侣?给我烧了! 加强版(组合计数)

    [Luogu4931]情侣?给我烧了! 加强版(组合计数) 题面 洛谷 题解 戳这里 忽然发现我自己推的方法是做这题的,也许后面写的那个才是做原题的QwQ. #include<iostream& ...

  2. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  3. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  4. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  5. 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)

    [HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...

  6. [总结]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...

  7. 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)

    [BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...

  8. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

  9. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

随机推荐

  1. ABPZero中的Name和SurName处理,以及EmailAddress解决方案(完美)。

    使用ABPzero的朋友们都知道,User表中有Name和Surname两个字段,这两个字段对于国内的用户来说相当的不友好. 以及我们的一些系统中是不会涉及到EmailAddress字段.也就是说不会 ...

  2. Linux服务器更换主板后,网卡识别失败的处理方法

    1)现象说明公司IDC机房里的一台线上服务器硬件报警,最后排查发现服务器主板坏了,随即联系厂商进行更换主板,最后更换后,登录服务器,发现网卡绑定及ip信息都在,但是ip却ping不通了,进一步排查,重 ...

  3. linux内核设计第七周——可执行程序的装载

  4. 同步手绘板——json

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.它基于ECMAScript的一个子集. JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族 ...

  5. 网络:LVS负载均衡原理

    LB集群的架构和原理很简单,就是当用户的请求过来时,会直接分发到Director Server上,然后它把用户的请求根据设置好的调度算法,智能均衡地分发到后端真正服务器(real server)上.为 ...

  6. 8 commands to check cpu information on Linux

    https://www.binarytides.com/linux-cpu-information/

  7. JavaScript解决一个带验证的Form两个Submit事件(一个页面保持不动【AJAX实现】,一个页面提交并跳转)的场景

    <form class="form-horizontal" action="/biz/patent/edit" method="post&quo ...

  8. [转帖]Gartner预测2019年全球IT支出将达到3.8万亿美元

    Gartner预测2019年全球IT支出将达到3.8万亿美元 http://server.zhiding.cn/server/2019/0130/3115439.shtml 全球领先的信息技术研究和顾 ...

  9. pandas.Series

    1.系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组.轴标签统称为索引. Pandas系列可以使用以下构造函数创建 - pandas.Series ...

  10. python格式化字符串Type Error: Format Requires Mapping 的问题

    最近几天 频繁看到有这种写法 BASIC_FORMAT = "%(levelname)s:%(name)s:%(message)s" 第一次看到的pythoner看到可能会有点懵逼 ...