【Luogu4921】情侣?给我烧了!(组合计数)

题面

洛谷

题解

很有意思的一道题目。

直接容斥?怎么样都要一个平方复杂度了。

既然是恰好\(k\)对,那么我们直接来做:

首先枚举\(k\)对人出来\(\displaystyle {n\choose k}\),然后枚\(k\)排座位出来\(\displaystyle {n\choose k}\),这些人间的顺序关系\(k!\),然后这些人可以左右交换\(2^{k}\)。

好的,现在的问题转化为了剩下\(n-k\)对人,两两之间不能坐在一排,求方案数。

首先这\(n-k\)对人的顺序提前算好\((n-k)!\),然后左右顺序忽视掉\(2^{n-k}\)。

假装\(n\)对人完全错开的方案数是\(f(n)\)。

类似错排问题,然而并不是错排问题。类似错排问题的递推公式的想法,每次加入最新的一组。

那么当前这一组随便和前面哪一排找个人互换就好了,一共有两种交换方法。所以这一部分的贡献是\((n-1)*2*2*2*f(n-1)\)。

还有特殊情况就是原本换的那组两个人在一排,现在和这一排强制交换,有两种交换方法。那么这部分的贡献就是\((n-1)*2*f(n-2)\)。

那么转移凑合一下就是\(f(n)=2(n-1)(f(n-1)+f(n-2))\)。

再把答案式写一下:

\[Ans_k=2^n{n\choose k}^2k!(n-k)!f(n-k)
\]

这样子预处理\(f\)之后单次的复杂度为\(O(n)\)。

不过我还看到了一种很有意思的方法。

设\(f[i][j]\)表示\(i\)对情侣中恰好有\(j\)对坐在一起的方案数,\(g[i]\)表示\(i\)对情侣都不坐在一起的方案数。

那么\(\displaystyle f[n][k]={n\choose k} A_n^k2^k*g[n-k]\)

那么反过来\(\displaystyle g[n]=(2n)!-\sum_{i=1}^n f[n][i]\)

这样子是\(O(n^2)\)的,感觉很有意思的方法。

代码是前面那种方法

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1010
#define MOD 998244353
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,f[MAX],jc[MAX],jv[MAX],inv[MAX],bin[MAX];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
int T=read();jc[0]=jv[0]=inv[0]=inv[1]=f[0]=bin[0]=1;
for(int i=1;i<MAX;++i)f[i]=2ll*(i-1)*(f[i-1]+f[i-2])%MOD;
for(int i=2;i<MAX;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<MAX;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<MAX;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<MAX;++i)bin[i]=2ll*bin[i-1]%MOD;
while(T--)
{
n=read();
for(int i=0;i<=n;++i)
printf("%lld\n",1ll*bin[n]*C(n,i)%MOD*C(n,i)%MOD*jc[n-i]%MOD*jc[i]%MOD*f[n-i]%MOD);
}
return 0;
}

【Luogu4921】情侣?给我烧了!(组合计数)的更多相关文章

  1. 【Luogu4931】情侣?给我烧了! 加强版(组合计数)

    [Luogu4931]情侣?给我烧了! 加强版(组合计数) 题面 洛谷 题解 戳这里 忽然发现我自己推的方法是做这题的,也许后面写的那个才是做原题的QwQ. #include<iostream& ...

  2. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  3. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  4. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  5. 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)

    [HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...

  6. [总结]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...

  7. 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)

    [BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...

  8. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

  9. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

随机推荐

  1. SSL踩坑ERR_SSL_VERSION_OR_CIPHER_MISMATCH

    最近公司项目开发了一个微信小程序,并且部署测试OK,由于微信小程序调用的后端接口必须是HTTPS,所以给接口安装了SSL,第一天测试都正常.第二天早上再使用时页面无响应. 抓包发现是后端接口抛出: n ...

  2. .NET持续集成与自动化部署之路第三篇——测试环境到生产环境的一键部署策略(Windows)

    Jenkins测试环境到生产环境的一键部署策略(Windows) 一.前言     前面我们已经初步实现了开发集成环境.测试环境的持续集成(自动化构建.自动化测试.自动化部署).但生产环境自动化部署迟 ...

  3. python语法基础笔记

    本篇笔记基于博主自己的的学习,理解,总结所写.很多东西可能存在误解,不能保证百分之百的正确. 1. 数据表达1.1 常量和变量1.2 数据类型1.2.1 基本数据元素1.2.1.1 数字1.2.1.2 ...

  4. echarts柱状图标签显示不完全的问题

    echarts 柱状图当x轴标签数目超过一定数目时在小尺寸设备上第一个和最后一个标签不显示(不是重叠),axisLabel设置interval:0也不起作用; 解决办法: 这个问题存在于4.0版本以上 ...

  5. Linux内核设计与实现 第四章

    1. 什么是调度 现在的操作系统都是多任务的,为了能让更多的任务能同时在系统上更好的运行,需要一个管理程序来管理计算机上同时运行的各个任务(也就是进程). 这个管理程序就是调度程序,功能: 决定哪些进 ...

  6. mybaits拦截器+自定义注解

    实现目的:为了存储了公共字典表主键的其他表在查询的时候不用关联查询(所以拦截位置位于mybaits语句查询得出结果集后) 项目环境 :springboot+mybaits 实现步骤:自定义注解——自定 ...

  7. poj 1723 SOLDIERS 带权中位数

    题目 http://poj.org/problem?id=1723 题解 带权中位数类型的题目~ 可以先考虑降维,最后集合的y坐标,明显是y坐标的中位数的位置,容易求出y方向的贡献res_y.比较麻烦 ...

  8. 【Deep Hash】CNNH

    [AAAI 2014] Supervised Hashing via Image Representation Learning [paper] [code] Rongkai Xia , Yan Pa ...

  9. 通过LVM给Linux扩容

    主要参考以下两篇文章: 1:https://www.cnblogs.com/sixiweb/p/3360008.html 2:https://wenku.baidu.com/view/42deee1a ...

  10. String系列-----AbstractStringBuilder

    1. AbstractStringBuilder是StringBuffer和StringBuilder的父类 package com.amazing.jdk.string_2017_12_31; im ...