Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways: 
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence). 
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).

Following is an example of the above encodings:

	S		(((()()())))

P-sequence 4 5 6666

W-sequence 1 1 1456

Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string. 

Input

The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.

Output

The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.

Sample Input

2
6
4 5 6 6 6 6
9
4 6 6 6 6 8 9 9 9

Sample Output

1 1 1 4 5 6
1 1 2 4 5 1 1 3 9
思路:
先将数字转换为字符串,然后只要判断出现右括号时往前推找到最近的左括号,标记下左括号代表已经和右括号结合过了,同时统计下在最近的没标记过的左括号之间有几个被标记过的,加起来
就是包含的括号数。题目没什么坑点,想到思路就能做出来了
实现代码:
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<set>
#include<list>
using namespace std;
#define ll long long
const int Mod = 1e9+;
const int inf = 1e9;
const int Max = 1e5+;
vector<int>vt[Max];
//void exgcd(ll a,ll b,ll& d,ll& x,ll& y){if(!b){d=a;x=1;y=0;}else{exgcd(b,a%b,d,y,x);y-=x*(a/b);}}
//ll inv(ll a,ll n){ll d, x, y;exgcd(a,n,d,x,y);return (x+n)%n;} ��Ԫ
//int gcd(int a,int b) { return (b>0)?gcd(b,a%b):a; } ��С��Լ
//int lcm(int a, int b) { return a*b/gcd(a, b); } ������
int main()
{
int n,m,i,j,a[],c[],vis[],ans;
char b[];
cin>>n;
while(n--){
cin>>m;
memset(vis,,sizeof(vis));
for(i=;i<m;i++)
cin>>a[i];
for(i=;i<*m;i++)
b[i] = '(';
for(i=;i<m;i++)
b[a[i]+i] = ')';
for(i=;i<m;i++){
ans = ;
for(j=a[i]+i-;j>=;j--){
if(b[j]=='('&&vis[j]==)
ans++;
else if(b[j]=='('&&vis[j]==){
vis[j]=;
ans++;
c[i] = ans;
break;
}
}
}
for(i=;i<m-;i++)
cout<<c[i]<<" ";
cout<<c[m-]<<endl;
}
return ;
}

poj1068 【模拟】的更多相关文章

  1. poj1068 模拟

    Parencodings Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25010   Accepted: 14745 De ...

  2. [ACM_模拟] POJ1068 Parencodings (两种括号编码转化 规律 模拟)

    Description Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two diff ...

  3. poj1068解题报告(模拟类)

    POJ 1068,题目链接http://poj.org/problem?id=1068 题意: 对于给出给出的原括号串S,对应两种数字密码串P.W: S         (((()()()))) P- ...

  4. [poj1068]Parencodings_模拟

    Parencodings 题目大意:给你一个P序列,表示从左到右的右括号左边有多少左括号,求M序列. 注释:M序列定义为每一个右括号左边最近的没有被之前的右括号匹配的括号之间,有多少已经匹配的括号队对 ...

  5. POJ1068 Parencodings(模拟)

    题目链接. 分析: 水题. #include <iostream> #include <cstdio> #include <cstring> using names ...

  6. POJ1068 --(模拟)

    这题是在看一个书的时候的一个例题,当时并不明白啥意思,于是便找了下原题,以前没在POJ上刷过,这是开了个头,以后努力刷这个网站 题目大概意思是:http://poj.org/problem?id=10 ...

  7. POJ-1068 Parencodings---模拟括号的配对

    题目链接: https://vjudge.net/problem/POJ-1068 题目大意: 给出一种括号序列的表示形式名叫P序列,规则是统计出每个右括号之前的左括号个数作为序列每项的值.然后要求你 ...

  8. App开发:模拟服务器数据接口 - MockApi

    为了方便app开发过程中,不受服务器接口的限制,便于客户端功能的快速测试,可以在客户端实现一个模拟服务器数据接口的MockApi模块.本篇文章就尝试为使用gradle的android项目设计实现Moc ...

  9. 故障重现, JAVA进程内存不够时突然挂掉模拟

    背景,服务器上的一个JAVA服务进程突然挂掉,查看产生了崩溃日志,如下: # Set larger code cache with -XX:ReservedCodeCacheSize= # This ...

随机推荐

  1. ${pageContext.request.contextPath}的作用【转载】

    原文地址:http://ps329795485-126-com.iteye.com/blog/1290662 刚开始不知道是怎么回事,在网上也查找了一些资料,看了还是晕. 看了另一个大侠的,终于有了点 ...

  2. UVA1265 Tour Belt Kruskal重构树、倍增、树上差分

    题目传送门 题意:定义$Tour \, Belt$为某张图上的一个满足以下条件的点集:①点集中至少有$2$个点②任意两点互相连通③图上两个端点都在这个点集中的边的权值的最小值严格大于图上只有一个端点在 ...

  3. java通过反射拷贝两个对象的同名同类型变量

    深拷贝和浅拷贝 首先对象的复制分为深拷贝和浅拷贝,关于这两者的区别,简单来说就是对于对象的引用,在拷贝的时候,是否会新开辟一块内存,还是直接复制引用. 两者的比较也有很多,具体可以看这篇文章: htt ...

  4. 阿里云ubuntu 16.04搭建odoo11服务器

    ubuntu 16.04 具体如何搭建odoo11网站的具体步骤可以参考这一篇文章 按上面的文章配置环境后,自己网站的启动具体步骤如下: 1.登录阿里云 [远程连接],进入命令行界面1 2.cd到目录 ...

  5. Bash : IO 重定向

    标准输入/输出(standard I/O)可能是软件设计原则里最重要的概念了.这个概念就是:程序应该有数据的来源端.数据的目的端(输出结果的地方)已经报告问题的地方,它们分别被称为标准输入(stand ...

  6. 如何新增一个ssh-key文件

    前言 由于在公司有一个sshkey 在用,用于绑定公司的git code 仓库.那么在家要连上git hub 仓库,就也需要一个 ssh key .为了避免公司信息外露,所以还是新增一个ssh key ...

  7. NOIP模拟赛20180917 隐藏题目

    给定n个数,值域范围1~n,每个数都不同,求满足所有相邻数不同的排列数.\(n\le 30\). 状压DP很好想,然而我考试时没写出来.对于排列还是有很多转化方法.另外要注意数据范围.

  8. 生产者消费者模式 php 【转】

    在工作中常常听到某某大牛之间的交谈会涉及到,xx消费者啊啥的,到底什么大牛之间讲的是什么? 这篇文章主要解决三个问题: 1.到底什么是生产者和消费者,以及它们之间的故事 2.它们之间靠什么交流 3.应 ...

  9. Onezero团队第三次站立会议随感

    >首先这是一个关于Android的小应用APP(记账本) >在Java基础薄弱的基础上尝试Android开发,让我感觉力不从心. >说实话本迭代周在程序设计,确实让我头疼,不知道怎么 ...

  10. pair project elevator

    结对编程——电梯调度 12061181 高孟烨 12061182 郝倩 1.结对编程的优缺点: 优点:结对编程可以结合两个人各自擅长之地,充分发挥两个人各自的优势,两个人一起合作效率会更高.一份工作两 ...