LCA指的是最近公共祖先(Least Common Ancestors),如下图所示:

  4和5的LCA就是2

  那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度

  然后把深度更深的那一个点(4)一个点地一个点地往上跳,直到到某个点(3)和另外那个点(5)的深度一样

然后两个点一起一个点地一个点地往上跳,直到到某个点(就是最近公共祖先)两个点“变”成了一个点

  不过有没有发现一个点地一个点地跳很浪费时间?

如果一下子跳到目标点内存又可能不支持,相对来说倍增的性价比算是很高的

  倍增的话就是一次跳2i 个点,不难发现深度差为x时,深度更深的那个点就需要跳x个点,于是可以写出这段代码

if(depth[a] < depth[b])    swap(a, b);
int c = depth[a] - depth[b];
for(int i = 0; i <= 14; i++){
if(c & (1 << i)){
a = up[a][i];
}
}

接下来很快就会发现一个很严重的问题:两个点按照这样跳,不能保证一定是最近的。所以倍增找lca的方法是这样的:从最大可以跳的步数开始跳(一定是2i),如果跳的到的位置一样,就不跳,如果不一样才跳,每次跳的路程是前一次的一半

  过程大概就像上图所示,但是执行完了这一段到的点不是最近公共祖先,但是,它们再往上跳一格,就到了

把这一段写成代码,就成了这样:

for(int i = 14; i >= 0; i--){
if(up[a][i] != up[b][i]){
a = up[a][i];
b = up[b][i];
}
}

前面还需要加上一句特判(当a和b在同一边时,深度浅的那个点就是最近公共祖先) if(a == b)  return a;

好了,会求lca了,关键是怎么构造倍增数组。没有疑问的是向上跳一格就是自己的父节点

f[i][0] = fa[i];

这个是初值,接着可以根据这个推出来其他的,除此之外还要附上初值0,不然有可能会RE

f[i][j] = f[f[i][j - 1]][j - 1];

就是把这一段路,分成两段已经知道的

完整代码就是这样的:

Matrix<int> up;
inline void init_bz(){
up = Matrix<int>(16, n + 1);
memset(up.p, 0, sizeof(int) * 16 * (n + 1));
for(int i = 1; i <= n; i++){
up[i][0] = fa[i];
}
for(int j = 1; j <= 14; j++){
for(int i = 1; i <= n; i++){
up[i][j] = up[up[i][j - 1]][j - 1];
}
}
}

注意倍增求LCA适用于询问多的情况,不然光在预处理上花的时间就已经够多了。

二,源代码展示

倍增算法可以在线求树上两个点的LCA,时间复杂度为nlogn

预处理:通过dfs遍历,记录每个节点到根节点的距离dist[u],深度d[u]

init()求出树上每个节点u的2^i祖先p[u][i]

求最近公共祖先,根据两个节点的的深度,如不同,向上调整深度大的节点,使得两个节点在同一层上,如果正好是祖先结束,否则,将连个节点同时上移,查询最近公共祖先。

1. DFS预处理出所有节点的深度和父节点

版本1

void dfs(int u){
for(int i=head[u];i!=-1;i=edge[i].next){
int to=edge[i].to;
if(to==p[u][0])continue;
d[to]=d[u]+1;
dist[to]=dist[u]+edge[i].w;
p[to][0]=u; //p[i][0]存i的父节点
dfs(to);
}
}

版本2

inline void dfs(int u)
{
int i;
for(i=head[u];i!=-1;i=next[i])
{
if (!deep[to[i]])
{
deep[to[i]] = deep[u]+1;
p[to[i]][0] = u; //p[x][0]保存x的父节点为u;
dfs(to[i]);
}
}
}

2. 初始各个点的2^j祖先是谁 ,其中 2^j (j =0...log(该点深度))倍祖先,1倍祖先就是父亲,2倍祖先是父亲的父亲......。i的2^j祖先就是i的(2^(j-1))祖先的2^(j-1)祖先:

void init(){
for(int j=1 ; (1<<j)<=n ; j++) {
for(int i=1;i<=n;i++) {
p[i][j]=p[p[i][j-1]][j-1];
}
}
}

版本2

void init()
{
int i,j;
//p[i][j]表示i结点的第2^j祖先
for(j=1;(1<<j)<=n;j++)
for(i=1;i<=n;i++)
if(p[i][j-1]!=-1)
p[i][j]=p[p[i][j-1]][j-1];//i的第2^j祖先就是i的第2^(j-1)祖先的第2^(j-1)祖先
}

3.从深度大的节点上升至深度小的节点同层,如果此时两节点相同直接返回此节点,即lca。否则,利用倍增法找到最小深度的 p[a][j]!=p[b][j],此时他们的父亲p[a][0]即lca。

版本1:

int lca(int a,int b){
if(d[a]>d[b])swap(a,b); //b在下面
int f=d[b]-d[a]; //f是高度差
for(int i=0;(1<<i)<=f;i++){ //(1<<i)&f找到f化为2进制后1的位置,移动到相应的位置
if((1<<i)&f) b=p[b][i]; //比如f=5(101),先移动2^0祖先,然后再移动2^2祖先
}
if(a!=b){
for(int i=(int)log2(N);i>=0;i--){
if(p[a][i]!=p[b][i]){ //从最大祖先开始,判断a,b祖先,是否相同
a=p[a][i]; b=p[b][i]; //如不相同,a b同时向上移动2^j
}
}
a=p[a][0]; //这时a的father就是LCA
}
return a;
}

版本2

int lca(int a,int b)//最近公共祖先
{
int i,j;
if(deep[a]<deep[b])swap(a,b);
for(i=0;(1<<i)<=deep[a];i++);
i--;
//使a,b两点的深度相同
for(j=i;j>=0;j--)
if(deep[a]-(1<<j)>=deep[b])
a=p[a][j];
if(a==b)return a;
//倍增法,每次向上进深度2^j,找到最近公共祖先的子结点
for(j=i;j>=0;j--)
{
if(p[a][j]!=-1&&p[a][j]!=p[b][j])
{
a=p[a][j];
b=p[b][j];
}
}
return p[a][0];
}

最近公共祖先 LCA 倍增算法的更多相关文章

  1. 最近公共祖先LCA(Tarjan算法)的思考和算法实现

    LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...

  2. 最近公共祖先LCA(Tarjan算法)的思考和算法实现——转载自Vendetta Blogs

    LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...

  3. 【lhyaaa】最近公共祖先LCA——倍增!!!

    高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...

  4. 最近公共祖先 LCA Tarjan算法

    来自:http://www.cnblogs.com/ylfdrib/archive/2010/11/03/1867901.html 对于一棵有根树,就会有父亲结点,祖先结点,当然最近公共祖先就是这两个 ...

  5. luogu3379 【模板】最近公共祖先(LCA) 倍增法

    题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...

  6. caioj 1236 最近公共祖先 树倍增算法模版 倍增

    [题目链接:http://caioj.cn/problem.php?id=1236][40eebe4d] 代码:(时间复杂度:nlogn) #include <iostream> #inc ...

  7. 最近公共祖先 LCA 倍增法

    [简介] 解决LCA问题的倍增法是一种基于倍增思想的在线算法. [原理] 原理和同样是使用倍增思想的RMQ-ST 算法类似,比较简单,想清楚后很容易实现. 对于每个节点u , ancestors[u] ...

  8. POJ1986 DistanceQueries 最近公共祖先LCA 离线算法Tarjan

    这道题与之前那两道模板题不同的是,路径有了权值,而且边是双向的,root已经给出来了,就是1,(这个地方如果还按之前那样来计算入度是会出错的.数据里会出现多个root...数据地址可以在poj的dis ...

  9. LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现

    首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵 ...

随机推荐

  1. jquery 笔记 点击周围区域子类隐藏,点击子类内部的信息 不隐藏

    zilei.click(ev){ var e = ev||event; e.stopPropagation(); //dosomething } $(document).click(function( ...

  2. HTML5 CSS3 Transform 笔记 (scale不起作用)

    Transform的 scale属性不能作用于 inline元素上,例如span 并且动画 animation  也不能作用于inline元素上 可以给span加display:inline-bloc ...

  3. SNMP MIBs and IPv6

    https://www.cisco.com/c/en/us/about/security-center/snmp-mib-ipv6.html

  4. 通过CSS自动截取字符串长度

      Table Tr TD的自动换行 <style type="text/css"> table { width: 30em; table-layout: fixed; ...

  5. js 2017

    JS面向对象 <script> function num(val) { return val * 8 } function Index(name, age) { this.name = n ...

  6. es6 Map,Set 和 WeakMap,WeakSet

    这些是新加的集合类型,提供了更加方便的获取属性值的方法,不用像以前一样用hasOwnProperty来检查某个属性是属于原型链上的呢还是当前对象的.同时,在进行属性值添加与获取时有专门的get,set ...

  7. 【bzoj5072】[Lydsy十月月赛]小A的树 树形背包dp

    题解: 比较好想 首先注意到如果最暴力的做法复杂度无法接受 而5000的范围基本是n^2做法了 只使用已经遍历过的点数目和当前子树中的点数目转移我们知道复杂度是n^2的 于是大胆猜测一波同一个节点为根 ...

  8. [转]Ubuntu默认使用root用户登录并免去输入密码

    启用Root用户登录 Ctrl + Alt + T进入终端, 输入cd /usr/share/lightm/ightm.conf.d, 如果提示你没有那个文件或目录.那就一次次的进入目录. 进入之后会 ...

  9. Python_序列化和反序列化模块

    序列化:将对象转换为可通过网络传输或可存储到本地磁盘的数据格式的转换过程,称为序列化,反之,称为反序列化 json: 用来实现不同语言,不同程序直接的信息交互,json支持所有高级语言之间的序列化交互 ...

  10. Number Sequence kmp

    Problem Description Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], .... ...