• 对比windowsPE文件与概述

在windows中可执行文件是pe文件格式,Linux中可执行文件是ELF文件,其文件格式是ELF文件格式,在Linux下的ELF文件除了可执行文件(Excutable File),可重定位目标文件(RellocatableObject File)、共享目标文件(SharedObjectFile)、核心转储文件(Core DumpFile)也都是ELF格式文件。

一个典型的ELF文件大致的结构如下

文件头(ELF Header)
程序头表(Program Header Table)
代码段(.text)
数据段(.data)
bss段(.bss)
段表字符串表(.shstrtab)
段表(Section Header Table)
符号表(.symtab)
字符串表(.strtab)
重定位表(.rel.text)
重定位表(.rel.data)
  • 使用Linux下专用工具readelf来查看elf文件信息

  • 查看readelf中的源码

  

FLF文件组成

文件头:

用于记录一个ELF文件的信息(多少位?能够运行的CPU平台是什么?程序的入口点在哪里)

  • 查看ELF头

  

在readelf的源码中变量类型Elf_Internal_Ehdr_,定义在internal头文件中

	#define EI_NIDENT        16                /* Size of e_ident[] */

	typedef struct elf_internal_ehdr {
unsigned char e_ident[EI_NIDENT]; /* ELF "magic number" */
bfd_vma e_entry; /* Entry point virtual address */
bfd_size_type e_phoff; /* Program header table file offset */
bfd_size_type e_shoff; /* Section header table file offset */
unsigned long e_version; /* Identifies object file version */
unsigned long e_flags; /* Processor-specific flags */
unsigned short e_type; /* Identifies object file type */
unsigned short e_machine; /* Specifies required architecture */
unsigned int e_ehsize; /* ELF header size in bytes */
unsigned int e_phentsize; /* Program header table entry size */
unsigned int e_phnum; /* Program header table entry count */
unsigned int e_shentsize; /* Section header table entry size */
unsigned int e_shnum; /* Section header table entry count */
unsigned int e_shstrndx; /* Section header string table index */
} Elf_Internal_Ehdr;
    • 在Linux自带的头文件中查看

   

    #define EI_NIDENT (16)

    typedef struct
{
unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */
Elf32_Half e_type; /* Object file type */
Elf32_Half e_machine; /* Architecture */
Elf32_Word e_version; /* Object file version */
Elf32_Addr e_entry; /* Entry point virtual address */
Elf32_Off e_phoff; /* Program header table file offset */
Elf32_Off e_shoff; /* Section header table file offset */
Elf32_Word e_flags; /* Processor-specific flags */
Elf32_Half e_ehsize; /* ELF header size in bytes */
Elf32_Half e_phentsize; /* Program header table entry size */
Elf32_Half e_phnum; /* Program header table entry count */
Elf32_Half e_shentsize; /* Section header table entry size */
Elf32_Half e_shnum; /* Section header table entry count */
Elf32_Half e_shstrndx; /* Section header string table index */
} Elf32_Ehdr;

程序头表:

记录了每个Segment的相关信息,比如类型、对应文件的偏移、大小、属性等,

程序头表和段头表相对独立,它们是由ELF文件头统一管理,程序头表管理ELF文件加载后,ELF文件内可加载段到内存映像的映射关系,一般只有可执行文件中,包含程序头表。程序头表包含多个程序头表项,程序头表描述的对象称为“Segment”,Segment描述的是ELF文件加载后的数据块,段Section描述的是ELF文件加载前的数据块。一般来说,来说两者会存在一定的对应关系,比如代码段.text的加载信息保存在程序头表项对应存放代码的Segment中,数据段.data的加载信息保存在程序头表项对应存放数据的Segment中。有时候为了简化程序头表项的个数,会把同类型的多个段,设置整个ELF文件作为一个Segment

  • 程序头表的数据结构

    /* Program segment header.  */

    typedef struct
{
Elf32_Word p_type; /* Segment type */
Elf32_Off p_offset; /* Segment file offset Segment对应的内容在文件的偏移*/
Elf32_Addr p_vaddr; /* Segment virtual address Segment在内存中的线性地址*/
Elf32_Addr p_paddr; /* Segment physical address */
Elf32_Word p_filesz; /* Segment size in file */
Elf32_Word p_memsz; /* Segment size in memory */
Elf32_Word p_flags; /* Segment flags */
Elf32_Word p_align; /* Segment alignment */
} Elf32_Phdr; #define PT_NULL 0 /* Program header table entry unused */
#define PT_LOAD 1 /* Loadable program segment */
#define PT_DYNAMIC 2 /* Dynamic linking information */
#define PT_INTERP 3 /* Program interpreter */
#define PT_NOTE 4 /* Auxiliary information */
#define PT_SHLIB 5 /* Reserved */
#define PT_PHDR 6 /* Entry for header table itself */
#define PT_TLS 7 /* Thread-local storage segment */
#define PT_NUM 8 /* Number of defined types */

p_flag权限属性标志

说明
1 可执行 PE_X
2 可写 PE_W
3 可读 PE_R

区段头表:用于记录ELF文件的主要的数据

  • 查看区段

  • 区段头表的数据结构

/* Section header.  */

typedef struct
{
Elf32_Word sh_name; /* Section name (string tbl index) */
Elf32_Word sh_type; /* Section type */
Elf32_Word sh_flags; /* Section flags */
Elf32_Addr sh_addr; /* Section virtual addr at execution */
Elf32_Off sh_offset; /* Section file offset */
Elf32_Word sh_size; /* Section size in bytes */
Elf32_Word sh_link; /* Link to another section */
Elf32_Word sh_info; /* Additional section information */
Elf32_Word sh_addralign; /* Section alignment */
Elf32_Word sh_entsize; /* Entry size if section holds table */
} Elf32_Shdr;

区段头表一共有10个字段,含义如下

(1)sh_name段名,是一个是一个4字节的偏移,记录了段名字符串在段表字符串表(“.shstrtab”段)内的偏移。段表字符串并非表的形式,而是一个文件块,保存了所有的段表字符串内容,存储在“.shstrtab”的段中,根据“.shstrtab”的偏移,加上sh_name便可以访问到每个段对应的段名字符串。

起始地址是000017ac,第一个段表项全0,sh_name在段表项中的偏移是001b,由上图可以得到“.shstrtab”段的偏移是0016ae,所以,计算段名的偏移应该是0x0000001b + 0x000016ae = 0x000016c9

根据计算的结果,查看0x000016c9处:

(2)sh_type,表示段的类型。段的类型有很多,常见的有SHT_PROGBITS,表示程序数据,SHT_SYMTAB表示符号表,SHT_STRTAB表示字符串表,还有专门存放构造函数数组段SHT_INIT_ARRAY,析构函数数组段SHT_FINI_ARRAY。

    •   .txt 代码段

    •   .data 数据段

    •   .radata记录常量数据

    •   .symtab记录符号表(相当于PE文件的导出表)的数据

    •   .strtab 串表段

    •   .shstrtab 有段表 字符串表段

    •   .rel .plt记录某个区段的重定位内容(相当于PE文件的导入表)

对应的宏如下:

 /* Legal values for sh_type (section type). */

 #define SHT_NULL          0                /* Section header table entry unused */
#define SHT_PROGBITS 1 /* Program data */
#define SHT_SYMTAB 2 /* Symbol table */
#define SHT_STRTAB 3 /* String table */
#define SHT_RELA 4 /* Relocation entries with addends */
#define SHT_HASH 5 /* Symbol hash table */
#define SHT_DYNAMIC 6 /* Dynamic linking information */
#define SHT_NOTE 7 /* Notes */
#define SHT_NOBITS 8 /* Program space with no data (bss) */
#define SHT_REL 9 /* Relocation entries, no addends */
#define SHT_SHLIB 10 /* Reserved */
#define SHT_DYNSYM 11 /* Dynamic linker symbol table */
#define SHT_INIT_ARRAY 14 /* Array of constructors */
#define SHT_FINI_ARRAY 15 /* Array of destructors */
#define SHT_PREINIT_ARRAY 16 /* Array of pre-constructors */

(3)sh_flags,表示段标志,记录段的属性。其中0表示默认属性,1表示段可写,取值位SHF_WRITE。2表示段加载后需要为之分配内存空间,取值为SHF_ALLOC。4表示可执行,取值为SHF_EXECINSTR,段标志属性可以叠加。

(4)sh_addr,表示段加载后的线性地址

(5)sh_offset,表示段在文件内的偏移,根据此偏移可确定段的位置,读取段的内容。

(6)sh_size,表示段的大小,单位为字节。需要注意的是,如果段类型为SHT_NOBITS,段内没有数据,那么段的大小并非指文件块的大小,而是指段加载后占用内存的大小。

(7~8)sh_link和sh_info表示段的链接信息,一般用于描述符号表段和重定位表段的链接信息。对于符号表段(SHT_SYMTAB),sh_link记录的是符号表使用的串表所在段(一般是,.strtab)对应段表项在段表内的索引。

sh_info 记录的是符号表最后一个局部符号的符号表项在符号表内的索引加1,一般恰好是第一个全局符号的符号表项索引,这样可以帮助连接器更快的地定位到第一个全局符号。如下图:段中符号表段的信息sh_info,刚好是局部符号+1的索引。

对于重定位表表段(段类型是SHT_REL),sh_link记录重定位所作用的符号表段表项早段内的索引,而sh_info记录重定位所作用的段对应的段表项在段表中的索引。

sh_type sh_link sh_info
SHT_DYNAMIC 此表项中条目所用到的字符串表在段表中的索引  
SHT_HASH 此哈希表所适用的符号表的段表索引  
SHT_REL 相关符号表的段表索引 重定位所使用的段的段表索引
SHT_RELA 相关联的字符串表的段表索引 最后一个局部符号的符号表索引值+1
其它 SHN_UNDEF 0

(9)sh_addralign,表示段的对齐方式,对齐规则为 sh_offset % sh_addralign = 0,即段的文件偏移必须是sh_addralign的整数倍,sh_addralign的取值必须是2的整数倍,入1、2、4、8等。

对齐值 对齐方式 说明
0 无对齐要求  
1 无对齐要求  
4 对齐4 满足sh_iffset % 4 = 0
16 对齐16 满足sh_iffset % 16 = 0
32 对齐32 满足sh_iffset % 32 = 0

(10) sh_entsize,一般用于保存注入符号表段,重定位表段时,表示段内保存表的表项大小。例如符号表段“.symtab”内保存的符号表的表项大小为sizeof(Elf32——sym)= 16字节,重定位表段“.rel.plt”内保存的重定位表的表项大小为sizeof(Elf32_rel)= 8字节。

ELF符号表(Symbol Table**)

ELF文件的符号表保存了程序中的符号信息,包括程序中的文件名、函数名、全局变量名等,符号表一般保存在名为“.strtab”的段内,该段对应段表项的类型为SHT_SYMTAB。符号表包含多个符号表项,每个符号表项记录了符号的名称、位置、类型等信息。符号表象的数据结构:

typedef struct
{
Elf32_Word st_name; /* Symbol name (string tbl index) */
Elf32_Addr st_value; /* Symbol value */
Elf32_Word st_size; /* Symbol size */
unsigned char st_info; /* Symbol type and binding */
unsigned char st_other; /* Symbol visibility */
Elf32_Section st_shndx; /* Section index */
} Elf32_Sym;

  

ELF重定位表(Reloc Table)

重定位表常见于可重定位目标文件内,对于静态链接生成的可可执行文件,一般不包括重定位表,动态链接生成的可执行文件暂时不讨论。重定位表一般保存在以名为“.rel”开头的段内,该段对应段表项的类型为SHT_REL,ELF文件需要重定位的段,一般都对应一个重定位表,比如代码段“.txt”的重定位表保持在“.rel.text”内,数据段“.data”的重定位表保持在“.rel.data”内。

重定位表包含多个重定位表项,每个重定位表项记录一条重定位信息,包括重定位的符号、位置、类型等。

/* Relocation table entry without addend (in section of type SHT_REL).  */

typedef struct
{
Elf32_Addr r_offset; /* Address */
Elf32_Word r_info; /* Relocation type and symbol index */
} Elf32_Rel;

ELF串表(String Table)

ELF文件内的段表和符号表需要记录段名和符号名,这些名称都是字符串。然而,段表项和符号表项都是固定长度的数据结构,无法存储不定长的字符串。因此FLE文件将名称字符串内容集中存放在一个段内,称为串表。这些段表项和符号表项只需记录段名字符串或符号名字符串在对应串表项的位置即可。

虽然虽然存储的字符串表的内容称为串表,但是并非表的形式,而是一个文件区域。

 

Linux之ELF文件初探的更多相关文章

  1. linux 修改 elf 文件的dynamic linker 和 rpath

    linux 修改 elf 文件的dynamic linker 和 rpath https://nixos.org/patchelf.html 下载地址 https://nixos.org/releas ...

  2. 利用linux判断elf文件是64位还是32位

    readelf 命令,参数为-h 例如 文件名为python >>>readelf -h python 得到的是ELF Header中的项Magic 第五个数 02时为64位,01时 ...

  3. ELF文件的加载过程(load_elf_binary函数详解)--Linux进程的管理与调度(十三)

    加载和动态链接 从编译/链接和运行的角度看,应用程序和库程序的连接有两种方式. 一种是固定的.静态的连接,就是把需要用到的库函数的目标代码(二进制)代码从程序库中抽取出来,链接进应用软件的目标映像中: ...

  4. Linux 可执行文件 ELF结构 及程序载入执行

    Linux下ELF文件类型分为以下几种: 1.可重定位文件,比如SimpleSection.o: 2.可运行文件,比如/bin/bash. 3.共享目标文件,比如/lib/libc.so. 在Linu ...

  5. linux实践之ELF文件分析

    linux实践之ELF文件分析 下面开始elf文件的分析. 我们首先编写一个简单的C代码. 编译链接生成可执行文件. 首先,查看scn15elf.o文件的详细信息. 以16进制形式查看scn15elf ...

  6. 实例分析ELF文件动态链接

    参考文献: <ELF V1.2> <程序员的自我修养---链接.装载与库>第6章 可执行文件的装载与进程 第7章 动态链接 <Linux GOT与PLT> 开发平台 ...

  7. 实例分析ELF文件静态链接

    参考文献: <ELF V1.2> <程序员的自我修养---链接.装载与库>第4章 静态链接 开发平台: [thm@tanghuimin static_link]$ uname ...

  8. ELF文件数据布局探索(1)

    作为一名Linux小白,第一次看到a.out这个名字,感觉实在是奇怪,搜了一下才知道这是编译器输出的默认可执行文件名 然后vi一下,哇,各种乱码,仔细看看,发现了三个清晰的字符ELF.继续搜索, 第一 ...

  9. bin文件和elf文件

    ELF文件格式是一个开放标准,各种UNIX系统的可执行文件都采用ELF格式,它有三种不同的类型: 可重定位的目标文件(Relocatable,或者Object File) 可执行文件(Executab ...

随机推荐

  1. unzip 命令指定解压路径

    在使用unzip进行文件包解压,可以用来解压zip/jar/war包类型,有时解压时需要解压到指定路径时可以使用参数 -d 来指定,例如: unzip services-bak.jar -d ./we ...

  2. java多线程技术核心

    1.进程的三大特征: 独立性:拥有自己的独立的地址空间,一个进程不可以直接去访问其他进程的地址空间. 动态性:是一个系统中活动的指令的集合. 并发性:单个进程可以在多个处理器上并发进行,互不影响. 2 ...

  3. Spring Boot 整合视图层技术

    这一节我们主要学习如何整合视图层技术: Jsp Freemarker Thymeleaf 在之前的案例中,我们都是通过 @RestController 来处理请求,所以返回的内容为json对象.那么如 ...

  4. git 查看日志记录

    1.git log 如果日志特别多的话,在git bash中,按向下键来查看更多,按q键退出查看日志. 2.git show 查看最近一次commit内容,也可以后面加commit号,单独查看此次版本 ...

  5. Ubuntu server 安装及jdk+mysql安装教程

    Ubuntu server 安装教程 1.查找及下载Ubuntu镜像文件 可以在以下页面下载想要的版本,我这里选择19.04 server版的iso镜像文件: http://mirrors.163.c ...

  6. typedef说明

    typedef 只对已有的类型进行别名定义,不产生新的类型: #define 只是在预处理过程对代码进行简单的替换. 类比理解: typedef  unsigned int  UINT32;  // ...

  7. python编程基础之三十八

    正则表达式:正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑. 需要引入内置模块r ...

  8. python编程基础之二十

    字符串的其他常用方法: ord(char)  # 返回char字符对应的码值,可以是中文字符 chr(x)  # 输入一个unicode码,返回对应的字符 eval(str)  # 将str 中的内容 ...

  9. 跑的比谁都快 51Nod - 1789

    香港记者跑的比谁都快是众所周知的常识.   现在,香港记者站在一颗有  nn 个点的树的根结点上(即1号点),编号为  ii 的点拥有权值  a[i]a[i] ,数据保证每个点的编号都小于它任意孩子结 ...

  10. 推荐一款超好用的工具cmder

    今天来推荐一个超级好用的命令行工具:cmder 一款Windows环境下非常简洁美观易用的cmd替代者,它支持了大部分的Linux命令.支持ssh连接linux,使用起来非常方便.比起cmd.powe ...