librosa是一个非常强大的python语音信号处理的第三方库,本文参考的是librosa的官方文档,本文主要总结了一些重要,对我来说非常常用的功能。学会librosa后再也不用用python去实现那些复杂的算法了,只需要一句语句就能轻松实现。

先总结一下本文中常用的专业名词:sr:采样率、hop_length:帧移、overlapping:连续帧之间的重叠部分、n_fft:窗口大小、spectrum:频谱、spectrogram:频谱图或叫做语谱图、amplitude:振幅、mono:单声道、stereo:立体声

读取音频

librosa.load(path, sr=22050, mono=True, offset=0.0, duration=None)

读取音频文件。默认采样率是22050,如果要保留音频的原始采样率,使用sr = None

参数

  • path :音频文件的路径。
  • sr :采样率,如果为“None”使用音频自身的采样率
  • mono :bool,是否将信号转换为单声道
  • offset :float,在此时间之后开始阅读(以秒为单位)
  • 持续时间:float,仅加载这么多的音频(以秒为单位)

返回:

  • 音频时间序列
  • sr 音频的采样率

重采样

librosa.resample(y, orig_sr, target_sr, fix=True, scale=False) 

重新采样从orig_sr到target_sr的时间序列

参数

  • :音频时间序列。可以是单声道或立体声。
  • orig_sr :y的原始采样率
  • target_sr :目标采样率
  • fix:bool,调整重采样信号的长度,使其大小恰好为 $\frac{len(y)}{orig\_sr}*target\_sr =t*target\_sr$
  • scale:bool,缩放重新采样的信号,以使y和y_hat具有大约相等的总能量。

返回

  • y_hat :重采样之后的音频数组

读取时长

librosa.get_duration(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, center=True, filename=None)

计算时间序列的的持续时间(以秒为单位)

参数:

  • :音频时间序列
  • sr y的音频采样率
  • :STFT矩阵或任何STFT衍生的矩阵(例如,色谱图或梅尔频谱图)。根据频谱图输入计算的持续时间仅在达到帧分辨率之前才是准确的。如果需要高精度,则最好直接使用音频时间序列。
  • n_fft S的 FFT窗口大小
  • hop_length S列之间的音频样本数
  • center布尔值
    • 如果为True,则S [:, t]的中心为y [t * hop_length]
    • 如果为False,则S [:, t]从y[t * hop_length]开始
  • filename :如果提供,则所有其他参数都将被忽略,并且持续时间是直接从音频文件中计算得出的。

返回:

  • :持续时间(以秒为单位)

读取采样率

librosa.get_samplerate(path)

参数

  • path :音频文件的路径

返回:音频文件的采样率

写音频

librosa.output.write_wav(path, y, sr, norm=False)

将时间序列输出为.wav文件

参数

  • 路径:保存输出wav文件的路径
  • :音频时间序列。
  • sr :y的采样率
  • norm:bool,是否启用幅度归一化。将数据缩放到[-1,+1]范围。

过零率

计算音频时间序列的过零率。

librosa.feature.zero_crossing_rate(y, frame_length = 2048, hop_length = 512, center = True) 

参数:

  • :音频时间序列
  • frame_length :帧长
  • hop_length :帧移
  • center:bool,如果为True,则通过填充y的边缘来使帧居中。

返回:

  • zcr:zcr[0,i]是第i帧中的过零率
y, sr = librosa.load(librosa.util.example_audio_file())
print(librosa.feature.zero_crossing_rate(y))
# array([[ 0.134, 0.139, ..., 0.387, 0.322]])

波形图

librosa.display.waveplot(y, sr=22050, x_axis='time', offset=0.0, ax=None)

绘制波形的幅度包络线

参数

  • :音频时间序列
  • sr :y的采样率
  • x_axis :str {'time','off','none'}或None,如果为“时间”,则在x轴上给定时间刻度线。
  • offset:水平偏移(以秒为单位)开始波形图
import librosa.display
import matplotlib.pyplot as plt y, sr = librosa.load(librosa.util.example_audio_file(), duration=10)
librosa.display.waveplot(y, sr=sr)
plt.show()

短时傅里叶变换

librosa.stft(y, n_fft=2048, hop_length=None, win_length=None, window='hann', center=True, pad_mode='reflect')

短时傅立叶变换(STFT),返回一个复数矩阵使得D(f,t)

  • 复数的实部:np.abs(D(f,t))频率的振幅
  • 复数的虚部:np.angle(D(f,t))频率的相位

参数:

  • y:音频时间序列
  • n_fftFFT窗口大小,n_fft=hop_length+overlapping
  • hop_length帧移,如果未指定,则默认win_length / 4。
  • win_length每一帧音频都由window()加窗。窗长win_length,然后用零填充以匹配N_FFT。默认win_length=n_fft
  • window:字符串,元组,数字,函数 shape =(n_fft, )
    • 窗口(字符串,元组或数字);
    • 窗函数,例如scipy.signal.hanning
    • 长度为n_fft的向量或数组
  • center:bool
    • 如果为True,则填充信号y,以使帧 D [:, t]以y [t * hop_length]为中心。
    • 如果为False,则D [:, t]从y [t * hop_length]开始
  • dtypeD的复数值类型。默认值为64-bit complex复数
  • pad_mode如果center = True,则在信号的边缘使用填充模式。默认情况下,STFT使用reflection padding。

返回:

  • STFT矩阵,shape =(1 + $\frac{n_{fft} }{2}$,t)

短时傅里叶逆变换

librosa.istft(stft_matrix, hop_length=None, win_length=None, window='hann', center=True, length=None)

短时傅立叶逆变换(ISTFT),将复数值D(f,t)频谱矩阵转换为时间序列y,窗函数、帧移等参数应与stft相同

参数

  • stft_matrix :经过STFT之后的矩阵
  • hop_length :帧移,默认为$\frac{win_{length}}{4}$
  • win_length :窗长,默认为n_fft
  • window:字符串,元组,数字,函数或shape = (n_fft, )
    • 窗口(字符串,元组或数字)
    • 窗函数,例如scipy.signal.hanning
    • 长度为n_fft的向量或数组
  • center:bool
    • 如果为True,则假定D具有居中的帧
    • 如果False,则假定D具有左对齐的帧
  • length:如果提供,则输出y为零填充或剪裁为精确长度音频

返回

  • :时域信号

幅度转dB

librosa.amplitude_to_db(S, ref=1.0)

将幅度频谱转换为dB标度频谱。也就是对S取对数与这个函数相反的是librosa.db_to_amplitude(S)

参数

  • :输入幅度
  • ref :参考值,振幅abs(S)相对于ref进行缩放,$20*log_{10}(\frac{S}{ref})$

返回

  • dB为单位的S

功率转dB

librosa.core.power_to_db(S, ref=1.0)

将功率谱(幅度平方)转换为分贝(dB)单位,与这个函数相反的是librosa.db_to_power(S)

参数

  • S:输入功率
  • ref :参考值,振幅abs(S)相对于ref进行缩放,$10*log_{10}(\frac{S}{ref})$

返回

  • dB为单位的S
import librosa.display
import numpy as np
import matplotlib.pyplot as plt y, sr = librosa.load(librosa.util.example_audio_file())
S = np.abs(librosa.stft(y))
print(librosa.power_to_db(S ** 2))
# array([[-33.293, -27.32 , ..., -33.293, -33.293],
# [-33.293, -25.723, ..., -33.293, -33.293],
# ...,
# [-33.293, -33.293, ..., -33.293, -33.293],
# [-33.293, -33.293, ..., -33.293, -33.293]], dtype=float32) plt.figure()
plt.subplot(2, 1, 1)
librosa.display.specshow(S ** 2, sr=sr, y_axis='log') # 从波形获取功率谱图
plt.colorbar()
plt.title('Power spectrogram')
plt.subplot(2, 1, 2)
# 相对于峰值功率计算dB, 那么其他的dB都是负的,注意看后边cmp值
librosa.display.specshow(librosa.power_to_db(S ** 2, ref=np.max),
sr=sr, y_axis='log', x_axis='time')
plt.colorbar(format='%+2.0f dB')
plt.title('Log-Power spectrogram')
plt.set_cmap("autumn")
plt.tight_layout()
plt.show()

功率谱和dB功率谱

频谱图

librosa.display.specshow(data,  x_axis=None, y_axis=None, sr=22050, hop_length=512)

参数:

  • data:要显示的矩阵
  • sr :采样率
  • hop_length :帧移
  • x_axis 、y_axis :x和y轴的范围
  • 频率类型
    • 'linear','fft','hz':频率范围由FFT窗口和采样率确定
    • 'log':频谱以对数刻度显示
    • 'mel':频率由mel标度决定
  • 时间类型
    • time:标记以毫秒,秒,分钟或小时显示。值以秒为单位绘制。
    • s:标记显示为秒。
    • ms:标记以毫秒为单位显示。
  • 所有频率类型均以Hz为单位绘制
import librosa.display
import numpy as np
import matplotlib.pyplot as plt y, sr = librosa.load(librosa.util.example_audio_file())
plt.figure() D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
plt.subplot(2, 1, 1)
librosa.display.specshow(D, y_axis='linear')
plt.colorbar(format='%+2.0f dB')
plt.title('线性频率功率谱') plt.subplot(2, 1, 2)
librosa.display.specshow(D, y_axis='log')
plt.colorbar(format='%+2.0f dB')
plt.title('对数频率功率谱')
plt.show()

Mel滤波器组

librosa.filters.mel(sr, n_fft, n_mels=128, fmin=0.0, fmax=None, htk=False, norm=1)

创建一个滤波器组矩阵以将FFT合并成Mel频率

参数:

  • sr :输入信号的采样率
  • n_fft :FFT组件数
  • n_mels :产生的梅尔带数
  • fmin :最低频率(Hz)
  • fmax:最高频率(以Hz为单位)。如果为None,则使用fmax = sr / 2.0
  • norm:{None,1,np.inf} [标量]
    • 如果为1,则将三角mel权重除以mel带的宽度(区域归一化)。否则,保留所有三角形的峰值为1.0

返回:Mel变换矩阵

melfb = librosa.filters.mel(22050, 2048)
# array([[ 0. , 0.016, ..., 0. , 0. ],
# [ 0. , 0. , ..., 0. , 0. ],
# ...,
# [ 0. , 0. , ..., 0. , 0. ],
# [ 0. , 0. , ..., 0. , 0. ]])
import matplotlib.pyplot as plt
plt.figure()
librosa.display.specshow(melfb, x_axis='linear')
plt.ylabel('Mel filter')
plt.title('Mel filter bank')
plt.colorbar()
plt.tight_layout()
plt.show()

计算Mel scaled 频谱

librosa.feature.melspectrogram(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann',
center=True, pad_mode='reflect', power=2.0)

如果提供了频谱图输入S,则通过mel_f.dot(S)将其直接映射到mel_f上。

如果提供了时间序列输入y,sr,则首先计算其幅值频谱S,然后通过mel_f.dot(S ** power)将其映射到mel scale上 。默认情况下,power= 2在功率谱上运行。

参数

  • :音频时间序列
  • sr :采样率
  • :频谱
  • n_fft :FFT窗口的长度
  • hop_length :帧移
  • win_length :窗口的长度为win_length,默认win_length = n_fft
  • window :字符串,元组,数字,函数或shape =(n_fft, )
    • 窗口规范(字符串,元组或数字);看到scipy.signal.get_window
    • 窗口函数,例如 scipy.signal.hanning
    • 长度为n_fft的向量或数组
  • center:bool
    • 如果为True,则填充信号y,以使帧 t以y [t * hop_length]为中心。
    • 如果为False,则帧t从y [t * hop_length]开始
  • power:幅度谱的指数。例如1代表能量,2代表功率,等等
  • n_mels:滤波器组的个数 1288
  • fmax:最高频率

返回:Mel频谱shape=(n_mels, t)

import librosa.display
import numpy as np
import matplotlib.pyplot as plt y, sr = librosa.load(librosa.util.example_audio_file())
# 方法一:使用时间序列求Mel频谱
print(librosa.feature.melspectrogram(y=y, sr=sr))
# array([[ 2.891e-07, 2.548e-03, ..., 8.116e-09, 5.633e-09],
# [ 1.986e-07, 1.162e-02, ..., 9.332e-08, 6.716e-09],
# ...,
# [ 3.668e-09, 2.029e-08, ..., 3.208e-09, 2.864e-09],
# [ 2.561e-10, 2.096e-09, ..., 7.543e-10, 6.101e-10]]) # 方法二:使用stft频谱求Mel频谱
D = np.abs(librosa.stft(y)) ** 2 # stft频谱
S = librosa.feature.melspectrogram(S=D) # 使用stft频谱求Mel频谱 plt.figure(figsize=(10, 4))
librosa.display.specshow(librosa.power_to_db(S, ref=np.max),
y_axis='mel', fmax=8000, x_axis='time')
plt.colorbar(format='%+2.0f dB')
plt.title('Mel spectrogram')
plt.tight_layout()
plt.show()

提取Log-Mel Spectrogram 特征

  Log-Mel Spectrogram特征是目前在语音识别和环境声音识别中很常用的一个特征,由于CNN在处理图像上展现了强大的能力,使得音频信号的频谱图特征的使用愈加广泛,甚至比MFCC使用的更多。在librosa中,Log-Mel Spectrogram特征的提取只需几行代码:

import librosa

y, sr = librosa.load('./train_nb.wav', sr=16000)
# 提取 mel spectrogram feature
melspec = librosa.feature.melspectrogram(y, sr, n_fft=1024, hop_length=512, n_mels=128)
logmelspec = librosa.amplitude_to_db(melspec) # 转换到对数刻度 print(logmelspec.shape) # (128, 65)

  可见,Log-Mel Spectrogram特征是二维数组的形式,128表示Mel频率的维度(频域),64为时间帧长度(时域),所以Log-Mel Spectrogram特征是音频信号的时频表示特征。其中,n_fft指的是窗的大小,这里为1024;hop_length表示相邻窗之间的距离,这里为512,也就是相邻窗之间有50%的overlap;n_mels为mel bands的数量,这里设为128。

提取MFCC系数

  MFCC特征是一种在自动语音识别和说话人识别中广泛使用的特征。关于MFCC特征的详细信息,有兴趣的可以参考博客http:// blog.csdn.net/zzc15806/article/details/79246716。在librosa中,提取MFCC特征只需要一个函数:

librosa.feature.mfcc(y=None, sr=22050, S=None, n_mfcc=20, dct_type=2, norm='ortho', **kwargs)

参数:

  • y:音频数据
  • sr:采样率
  • S:np.ndarray,对数功能梅尔谱图
  • n_mfcc:int>0,要返回的MFCC数量
  • dct_type:None, or {1, 2, 3}  离散余弦变换(DCT)类型。默认情况下,使用DCT类型2。
  • norm: None or ‘ortho’ 规范。如果dct_type为2或3,则设置norm =’ortho’使用正交DCT基础。 标准化不支持dct_type = 1。

返回:

  • M: MFCC序列
import librosa

y, sr = librosa.load('./train_nb.wav', sr=16000)
# 提取 MFCC feature
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40) print(mfccs.shape) # (40, 65)

线性谱梅尔谱对数谱:经过FFT变换后得到语音数据的线性谱,对线性谱取Mel系数,得到梅尔谱;对线性谱取对数,得到对数谱。

参考

线性谱与梅尔谱

librosa语音信号处理的更多相关文章

  1. python做语音信号处理

    音频信号的读写.播放及录音 标准的python已经支持WAV格式的书写,而实时的声音输入输出需要安装pyAudio(http://people.csail.mit.edu/hubert/pyaudio ...

  2. 用Python进行语音信号处理

    1.语音信号处理之时域分析-音高追踪及其Python实现 2.语音信号处理之时域分析-音高及其Python实现 参考: 1.NumPy

  3. 语音信号处理之(三)矢量量化(Vector Quantization)

    语音信号处理之(三)矢量量化(Vector Quantization) zouxy09@qq.com http://blog.csdn.net/zouxy09 这学期有<语音信号处理>这门 ...

  4. 语音信号处理之(一)动态时间规整(DTW)

    语音信号处理之(一)动态时间规整(DTW) zouxy09@qq.com 原文:http://blog.csdn.net/zouxy09 这学期有<语音信号处理>这门课,快考试了,所以也要 ...

  5. 语音信号处理之动态时间规整(DTW)(转)

    这学期有<语音信号处理>这门课,快考试了,所以也要了解了解相关的知识点.呵呵,平时没怎么听课,现在只能抱佛脚了.顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下.下面总结的是第一个 ...

  6. 【VS开发】【智能语音处理】语音信号处理之(一)动态时间规整(DTW)

    语音信号处理之(一)动态时间规整(DTW) zouxy09@qq.com http://blog.csdn.net/zouxy09 这学期有<语音信号处理>这门课,快考试了,所以也要了解了 ...

  7. 【VS开发】【智能语音处理】语音信号处理之(四)梅尔频率倒谱系数(MFCC)

    语音信号处理之(四)梅尔频率倒谱系数(MFCC) zouxy09@qq.com http://blog.csdn.net/zouxy09 这学期有<语音信号处理>这门课,快考试了,所以也要 ...

  8. python实现语音信号处理常用度量方法

    信噪比(SNR) 有用信号功率与噪声功率的比(此处功率为平均功率),也等于幅度比的平方 $$SNR(dB)=10\log_{10}\frac{\sum_{n=0}^{N-1}s^2(n)}{\sum_ ...

  9. 语音频谱语音信号处理之(四)梅尔频率倒谱系数(MFCC)

    今天一直在查找语音频谱之类的问题,今天正好有机会和大家共享一下. 语音信号处置之(四)梅尔频率倒谱系数(MFCC) zouxy09@qq.com http://blog.csdn.net/zouxy0 ...

随机推荐

  1. 数据仓库系列之ETL过程和ETL工具

    上周因为在处理很多数据源集成的事情一直没有更新系列文章,在这周后开始规律更新.在维度建模中我们已经了解数据仓库中的维度建模方法以及基本要素,在这篇文章中我们将学习了解数据仓库的ETL过程以及实用的ET ...

  2. Selenium webdriver工作原理

    webdriver是以server-client 经典模式设计的 server端可以是任何浏览器作为remote server,职责就是处理client的请求并作出相应操作,response的具体内容 ...

  3. Redis学习总结(四)--Redis主从配置

    在分布式系统架构设计中高可用是必须考虑的因素之一.高可用通常是指,通过设计减少系统不能提供服务的时间.而单点是系统高可用的最大的败笔,如果单点出现问题的话,那么整个服务就不能使用了,所以应该尽量在系统 ...

  4. VScode 插件推荐与C/C++配置

    以下是我经常用到的VScode插件.由于插件本身具有详细的配置和介绍,不对插件本身的安装配置进行说明,仅仅支出这些插件的主要功能.具体使用强烈推荐看一下安装插件后的说明,大多数的问题和设置都可以找到, ...

  5. .netcore CAP2.6 快速入门

    CAP介绍: CAP是一个用来解决微服务或者分布式系统中分布式事务问题的一个开源项目解决方案.可以解决跨服务器的数据一致性问题.一个简单的列子,如:订单系统创建订单后需要通知邮件通知用户下单成功,解决 ...

  6. 深刻剖析spring三种注入方式以及使用注解的原理

    概述 注释配置相对于 XML 配置具有很多的优势: 它可以充分利用 Java 的反射机制获取类结构信息,这些信息可以有效减少配置的工作.如使用 JPA 注释配置 ORM 映射时,我们就不需要指定 PO ...

  7. Java基础之Collection与Collections浅析

    Java基础之Collection与Collections浅析 一.前言: 位于Java.util包下的Collection与Collections都是Java中重要的工具类,它们都是Java集合框架 ...

  8. 如何替换ROS中默认的Planner

    官方文档参阅:http://wiki.ros.org/pluginlib 有时候,可能会需要将替换ROS默认的planner替换成别的planner或我们自己的planner.这就涉及到了新plann ...

  9. Android读取date中年月日

    1.Date对象:Date date = getDate(); 2.Calendar实例:Calendar calendar = Calendar.getInstance(); 3.calendar. ...

  10. gym/102059 E

    gym/102059 待通过:A.D.G.J.M 已补过:E E:电路题,判断一个图是不是简单电路.不需要特殊的技巧,利用set存图,把度数为2的点都删掉,融入到一条边上即可. #include &l ...