数位\(DP\)

首先考虑二进制数\(G(i)\)的一些性质:

  • \(G(i)\)不可能有连续两位第\(x\)位和第\(x+1\)位都是\(1\)。因为这样就可以进位到第\(x+2\)位。其余情况下,这个\(G(i)\)必然合法。
  • 对于一对\(x,y\)满足\(x<y\),则\(G(x)<G(y)\)。

则根据这些性质,我们就可以考虑数位\(DP\)。

按照一般数位\(DP\)的套路,我们把对\(a\sim b\)的\(DP\)转化为对\(1\sim a-1\)和\(1\sim b\)的两个\(DP\)。

且我们依然可以通过记一下当前位置是否依然在上界然后进行记忆化优化。

而由于这里不能有连续两位是\(1\)的特殊限制,我们只需记录上一位是否为\(1\)来辅助转移就可以了。

不过此处考虑到我们的目的,是要求异或值,也就是每一位是\(1\)的\(G\)值数量的奇偶性。

那么我们可以枚举二进制下每一位,然后求强制其是\(1\)的方案数的奇偶性即可。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define X 1000000007
#define LL long long
using namespace std;
int n;LL a,b,fib[100];
I int GV(bitset<100> s)//求出bitset转化成十进制并取模的值
{
RI i,pw=1,ans=0;for(i=0;i<=n;++i) s.test(i)&&(ans+=pw)>=X&&(ans-=X),(pw<<=1)>=X&&(pw-=X);
return ans;
}
class DigitalDper//数位DP
{
private:
int a[100],f[100][2];bitset<100> s;
I void Init(LL x) {for(RI i=n;~i;--i) fib[i]<=x?a[i]=1,x-=fib[i]:a[i]=0;}//分解上界
I int dfs(CI x,CI k,CI lst,CI flg)//记忆化搜索形式实现数位DP
{
RI lim=((flg&&!a[x])||lst)?0:1;if(x==k)//lim表示此位能取的上界
{
if(!lim) return 0;//如果第k位不能取1,返回0
if(!flg) return ~f[x][lst]?f[x][lst]:f[x][lst]=dfs(x-1,k,1,flg);//如果不在上界,看是否搜过,否则去搜
return dfs(x-1,k,1,flg);//直接搜
}
if(!~x) return 1;if(!flg&&~f[x][lst]) return f[x][lst];//看是否搜过
RI i,res=0;for(i=0;i<=lim;++i) res^=dfs(x-1,k,i,flg&&(i==a[x]));//枚举当前位
return !flg&&(f[x][lst]=res),res;//记忆化
}
public:
I bitset<100> GetAns(Con LL& x)//求答案
{
s.reset(),Init(x);for(RI i=n;~i;--i)//枚举每一位DP
memset(f,-1,sizeof(f)),s[i]=dfs(n,i,0,1);//记录此位结果
return s;//返回结果
}
}D;
int main()
{
freopen("B.in","r",stdin),freopen("B.out","w",stdout);
for(scanf("%lld%lld",&a,&b),fib[0]=1,fib[1]=2,n=2;fib[n-1]<b;++n) fib[n]=fib[n-1]+fib[n-2];--n;//读入+预处理
return printf("%d",GV(D.GetAns(b)^D.GetAns(a-1))),0;//输出答案
}

【2019.7.20 NOIP模拟赛 T2】B(B)(数位DP)的更多相关文章

  1. 【2019.8.20 NOIP模拟赛 T2】小B的树(tree)(树形DP)

    树形\(DP\) 考虑设\(f_{i,j,k}\)表示在\(i\)的子树内,从\(i\)向下的最长链长度为\(j\),\(i\)子树内直径长度为\(k\)的概率. 然后我们就能发现这个东西直接转移是几 ...

  2. 【2019.7.20 NOIP模拟赛 T1】A(A)(暴搜)

    打表+暴搜 这道题目,显然是需要打表的,不过打表的方式可以有很多. 我是打了两个表,分别表示每个数字所需的火柴棒根数以及从一个数字到另一个数字,除了需要去除或加入的火柴棒外,至少需要几根火柴棒. 然后 ...

  3. 【2019.8.20 NOIP模拟赛 T3】小X的图(history)(可持久化并查集)

    可持久化并查集 显然是可持久化并查集裸题吧... 就是题面长得有点恶心,被闪指导狂喷. 对于\(K\)操作,直接\(O(1)\)赋值修改. 对于\(R\)操作,并查集上直接连边. 对于\(T\)操作, ...

  4. 【2019.7.16 NOIP模拟赛 T2】折叠(fold)(动态规划)

    暴力\(DP\) 考虑暴力\(DP\),我们设\(f_{i,j}\)表示当前覆盖长度为\(i\),上一次折叠长度为\(j\)的方案数. 转移时需要再枚举这次的折叠长度\(k\)(\(k\ge j\)) ...

  5. 【2019.7.15 NOIP模拟赛 T2】与非树(nand)(树形DP)

    树形\(DP\) 实际上,这道题应该不是很难. 我们设\(f_{x,i,j}\)表示在以\(x\)为根的子树内,原本应输出\(i\),结果输出了\(j\)的情况数. 转移时,为了方便,我们先考虑与,再 ...

  6. (计数器)NOIP模拟赛(神奇的数位DP题。。)

    没有原题传送门.. 手打原题QAQ [问题描述]     一本书的页数为N,页码从1开始编起,请你求出全部页码中,用了多少个0,1,2,…,9.其中—个页码不含多余的0,如N=1234时第5页不是00 ...

  7. 2019.7.26 NOIP 模拟赛

    这次模拟赛真的,,卡常赛. The solution of T1: std是打表,,考场上sb想自己改进匈牙利然后wei了(好像匈牙利是错的. 大力剪枝搜索.代码不放了. 这是什么神仙D1T1,爆蛋T ...

  8. 20161003 NOIP 模拟赛 T2 解题报告

    Weed duyege的电脑上面已经长草了,经过辨认上面有金坷垃的痕迹. 为了查出真相,duyege 准备修好电脑之后再进行一次金坷垃的模拟实验. 电脑上面有若干层金坷垃,每次只能在上面撒上一层高度为 ...

  9. 【2019.7.25 NOIP模拟赛 T3】树(tree)(dfs序列上开线段树)

    没有换根操作 考虑如果没有换根操作,我们该怎么做. 我们可以求出原树的\(dfs\)序列,然后开线段树维护. 对于修改操作,我们可以倍增求\(LCA\),然后在线段树上修改子树内的值. 对于询问操作, ...

随机推荐

  1. 第05组 Alpha冲刺(3/4)

    第05组 Alpha冲刺(3/4) 队名:天码行空 组长博客连接 作业博客连接 团队燃尽图(共享): GitHub当日代码/文档签入记录展示(共享): 组员情况: 组员1:卢欢(组长) 过去两天完成了 ...

  2. import和from...import

    目录 一.import 模块名 二.from 模块名 import 具体的功能 三.import和from...import...的异同 一般使用import和from...import...导入模块 ...

  3. thinkphp5.1单模块设置

    thinkphp5.1单模块 1. // 是否支持多模块'app_multi_module' => false, // 自动搜索控制器'controller_auto_search' => ...

  4. IT兄弟连 HTML5教程 HTML5技术的应用现状及HTML5平台的兴起

    HTML5的优良特性很快被各种类型的网站利用,比如文件拖拽到网页上传功能,多数即使用HTML5提供的新属性就可以完成,来实现素材的免插件拖放.因此,HTML5技术实际上在国内已经获得了较广泛的应用与支 ...

  5. 解决邮件发送错误:503 Error: need EHLO and AUTH first

    引用文章 https://blog.csdn.net/lingfeian/article/details/96731620 问题描述 2019-07-21 16:14:00.449 ERROR 966 ...

  6. 拎壶学python3-----(1)输出与字符转换

    一.输入自己的名字打印 二.数字和字符串是不能相加的如下 怎么解决上边的问题呢? 如果是相加我们要把字符串转成数字类型如下 如果不想让他相加可以写成这样如下: ok,关于转换就先讲到这里

  7. 使用ADO.NET实体数据模型

    前景:要操作的数据表必须添加主键(方式:进入数据库-->数据表名-->设计-->列名右键-->设置主键) 可在服务器资源管理器中查看是否设置了主键(主键会有一把钥匙的图样) 1 ...

  8. Java日期时间API系列5-----Jdk7及以前的日期时间类TimeUnit在并发编程中的应用

    TimeUnit是一个时间单位枚举类,主要用于并发编程,时间单元表示给定粒度单元的时间持续时间,并提供实用程序方法来跨单元转换,以及在这些单元中执行计时和延迟操作. 1.时间单位换算 (1)支持的单位 ...

  9. 初识HTML_表单

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  10. Java 方法引用_特性

    JAVA8 方法引用:(四种方法引用的使用) 对象引用的特点:不同的对象可以操作同一块的内容:而方法引用就是指为一个方法设置别名,相当于一个方法定义了不同的名字. 引用静态方法: 类名称 :: sta ...