HDU - 4370 0 or 1 最短路
参考:https://www.cnblogs.com/hollowstory/p/5670128.html
题意:
给定一个矩阵C, 构造一个A矩阵,满足条件:
1.X12+X13+...X1n=1
2.X1n+X2n+...Xn-1n=1
3.for each i (1<i<n), satisfies ∑Xki (1<=k<=n)=∑Xij (1<=j<=n).
使得∑Cij*Xij(1<=i,j<=n)最小。
思路:
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
// #pragma GCC diagnostic error "-std=c++11"
// #pragma comment(linker, "/stack:200000000")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //18
// const int mod = 10007;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/
const int maxn = ;
int n;
int dis[maxn],a[maxn][maxn],vis[maxn];
void spfa(int s){
stack<int>q;
for(int i=; i<=n; i++){
dis[i] = a[s][i];
if(i!=s){
q.push(i);
vis[i] = true;
}
else vis[i] = false;
}
dis[s] = inf;
while(!q.empty()){
int u = q.top();q.pop();
vis[u] = false;
for(int i=; i<=n; i++){
if(u==i)continue;
if(dis[i] > dis[u] + a[u][i]){
dis[i] = dis[u] + a[u][i];
if(vis[i] == false)q.push(i), vis[i] = true;
}
}
}
} int main(){
while(~scanf("%d", &n)){
for(int i=; i<=n; i++){
for(int j=; j<=n; j++){
scanf("%d", &a[i][j]);
}
}
spfa();
int ans = dis[n];
int a1 = dis[];
spfa(n);
a1 += dis[n];
printf("%d\n", min(a1, ans));
}
return ;
}
HDU4370
HDU - 4370 0 or 1 最短路的更多相关文章
- HDU 4370 0 or 1 (最短路)
[题目链接](http://acm.hdu.edu.cn/showproblem.ph Problem Description Given a n/n matrix Cij (1<=i,j< ...
- HDU 4370 0 or 1 (最短路+最小环)
0 or 1 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/R Description Given a n*n matrix ...
- HDU - 4370 0 or 1
0 or 1 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- hdu 4370 0 or 1,最短路
题目描述 给定n * n矩阵C ij(1 <= i,j <= n),我们要找到0或1的n * n矩阵X ij(1 <= i,j <= n). 此外,X ij满足以下条件: 1. ...
- HDU 4370 0 or 1(转化为最短路)题解
思路:虽然是最短路专题里的,但也很难想到是最短路,如果能通过这些关系想到图论可能会有些思路.我们把X数组看做邻接矩阵,那么三个条件就转化为了:1.1的出度为1:2.n的入度为1:3.2~n-1的出度等 ...
- HDU 4370 0 or 1(spfa+思维建图+计算最小环)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4370 题目大意:有一个n*n的矩阵Cij(1<=i,j<=n),要找到矩阵Xij(i< ...
- 思维题(转换) HDU 4370 0 or 1
题目传送门 题意:题目巨晦涩的传递出1点和n点的初度等于入度等于1, 其余点出度和入度相等 分析:求最小和可以转换成求最短路,这样符合条件,但是还有一种情况.1点形成一个环,n点也形成一个环,这样也是 ...
- (中等) HDU 4370 0 or 1,建模+Dijkstra。
Description Given a n*n matrix C ij (1<=i,j<=n),We want to find a n*n matrix X ij (1<=i,j&l ...
- HDU 4370 0 or 1 (01规划)【Dijkstra】||【spfa】
<题目链接> 题目大意: 一个n*n的01矩阵,满足以下条件 1.X12+X13+...X1n=12.X1n+X2n+...Xn-1n=13.for each i (1<i<n ...
随机推荐
- 关于object对象转换为int类型
注意:不能强制转换!!! Object a; int b = Integer.parseInt(String.valueOf(a));
- CSS3: @font-face 介绍与使用
@font-face 是CSS3中的一个模块,他主要是把自己定义的Web字体嵌入到你的网页中,随着@font-face模块的出现,我们在Web的开发中使用字体不怕只能使用Web安全字体,你们当中或许有 ...
- as更新3.0.1的时候的编译异常
- ASP.NET Core on K8S深入学习(3-2)DaemonSet与Job
本篇已加入<.NET Core on K8S学习实践系列文章索引>,可以点击查看更多容器化技术相关系列文章. 上一篇<3-1 Deployment>中介绍了Deployment ...
- docker/kubernetes国内源/镜像源解决方式
最近在使用kubeadm时,被各种连接不上搞到崩溃.费了很多力气,基本都解决了.这里统一整理了国内的一些镜像源,apt源,kubeadm源等,以便查阅. 国内镜像源 Azure China提供了目前用 ...
- Tomcat源码分析 (六)----- Tomcat 启动过程(一)
说到Tomcat的启动,我们都知道,我们每次需要运行tomcat/bin/startup.sh这个脚本,而这个脚本的内容到底是什么呢?我们来看看. 启动脚本 startup.sh 脚本 #!/bin/ ...
- JDK基础必备面试十问
1. new一个对象在Java内部做了哪些工作? 从静态角度来看,new一个对象表示创建一个类的对象实例. 从JVM运行角度来看,当JVM执行到new字节码时,首先会去查看类有没有被加载到内存以及初始 ...
- Yii 三表关联 角色表、角色权限连接表、权限表
Yii 三表关联 角色表.角色权限连接表.权限表 角色表 role----------------id 唯一序号name 角色名称---------------- 角色权限连接表 lp-------- ...
- Spring参数的自解析--还在自己转换?你out了!
背景前段时间开发一个接口,因为调用我接口的同事脾气特别好,我也就不客气,我就直接把源代码发给他当接口定义了. 没想到同事看到我的代码问:要么 get a,b,c 要么 post [a,b,c]. ...
- UWP实现吸顶的Pivot
话不多说,先上效果 这里使用了一个ScrollProgressProvider.cs,我们这篇文章先解析一下整体的动画思路,以后再详细解释这个Provider的实现方式. 结构 整个页面大致结构是 & ...