HDU - 4370

参考:https://www.cnblogs.com/hollowstory/p/5670128.html

题意:

  给定一个矩阵C, 构造一个A矩阵,满足条件:

    1.X12+X13+...X1n=1
    2.X1n+X2n+...Xn-1n=1
    3.for each i (1<i<n), satisfies ∑Xki (1<=k<=n)=∑Xij (1<=j<=n).

  使得∑Cij*Xij(1<=i,j<=n)最小。

思路:

  理解条件之前先转换一下思维,将矩阵C看做描述N个点花费的邻接矩阵
  再来看三个条件:
    条件一:表示1号点出度为1
    条件二:表示n号点入度为1
    条件三:表示k( 1 < k < n )号点出度等于入度
  最后再来看看题目要求,∑Cij*Xij(1<=i,j<=n),很明显,这是某个路径的花费,而路径的含义可以有以下两种:
  一:1号点到n号点的花费
  二:1号点经过其它点成环,n号点经过其它点成环,这两个环的花费之和
  于是,就变成了一道简单的最短路问题
  关于环花费的算法,可以改进spfa算法,初始化dis[start] = INF,且一开始让源点之外的点入队
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
// #pragma GCC diagnostic error "-std=c++11"
// #pragma comment(linker, "/stack:200000000")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //18
// const int mod = 10007;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/
const int maxn = ;
int n;
int dis[maxn],a[maxn][maxn],vis[maxn];
void spfa(int s){
stack<int>q;
for(int i=; i<=n; i++){
dis[i] = a[s][i];
if(i!=s){
q.push(i);
vis[i] = true;
}
else vis[i] = false;
}
dis[s] = inf;
while(!q.empty()){
int u = q.top();q.pop();
vis[u] = false;
for(int i=; i<=n; i++){
if(u==i)continue;
if(dis[i] > dis[u] + a[u][i]){
dis[i] = dis[u] + a[u][i];
if(vis[i] == false)q.push(i), vis[i] = true;
}
}
}
} int main(){
while(~scanf("%d", &n)){
for(int i=; i<=n; i++){
for(int j=; j<=n; j++){
scanf("%d", &a[i][j]);
}
}
spfa();
int ans = dis[n];
int a1 = dis[];
spfa(n);
a1 += dis[n];
printf("%d\n", min(a1, ans));
}
return ;
}

HDU4370

HDU - 4370 0 or 1 最短路的更多相关文章

  1. HDU 4370 0 or 1 (最短路)

    [题目链接](http://acm.hdu.edu.cn/showproblem.ph Problem Description Given a n/n matrix Cij (1<=i,j< ...

  2. HDU 4370 0 or 1 (最短路+最小环)

    0 or 1 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/R Description Given a n*n matrix ...

  3. HDU - 4370 0 or 1

    0 or 1 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  4. hdu 4370 0 or 1,最短路

    题目描述 给定n * n矩阵C ij(1 <= i,j <= n),我们要找到0或1的n * n矩阵X ij(1 <= i,j <= n). 此外,X ij满足以下条件: 1. ...

  5. HDU 4370 0 or 1(转化为最短路)题解

    思路:虽然是最短路专题里的,但也很难想到是最短路,如果能通过这些关系想到图论可能会有些思路.我们把X数组看做邻接矩阵,那么三个条件就转化为了:1.1的出度为1:2.n的入度为1:3.2~n-1的出度等 ...

  6. HDU 4370 0 or 1(spfa+思维建图+计算最小环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4370 题目大意:有一个n*n的矩阵Cij(1<=i,j<=n),要找到矩阵Xij(i< ...

  7. 思维题(转换) HDU 4370 0 or 1

    题目传送门 题意:题目巨晦涩的传递出1点和n点的初度等于入度等于1, 其余点出度和入度相等 分析:求最小和可以转换成求最短路,这样符合条件,但是还有一种情况.1点形成一个环,n点也形成一个环,这样也是 ...

  8. (中等) HDU 4370 0 or 1,建模+Dijkstra。

    Description Given a n*n matrix C ij (1<=i,j<=n),We want to find a n*n matrix X ij (1<=i,j&l ...

  9. HDU 4370 0 or 1 (01规划)【Dijkstra】||【spfa】

    <题目链接> 题目大意: 一个n*n的01矩阵,满足以下条件 1.X12+X13+...X1n=12.X1n+X2n+...Xn-1n=13.for each i (1<i<n ...

随机推荐

  1. Android Studio 蓝牙开发实例——基于Android 6.0

    因项目需要做一个Android 的蓝牙app来通过手机蓝牙传输数据以及控制飞行器,在此,我对这段时间里写的蓝牙app的代码进行知识梳理和出现错误的总结. 该应用的Compile Sdk Version ...

  2. Asp.Net MVC SingleServiceResolver类剖析

    SingleServiceResolver一般用于类工厂创建和注入点接口留白.类工厂创建比如Controller控制依赖于此类的创建,注入点留白实质上是依赖注入所对外预留的接口. 以第二个特性为例. ...

  3. sql server 2008 外键的级联操作

    问题提出:现在我有三张表,学生Student,课程Course,成绩SC 1.  学生表Student,主键是学号Sno 2.  课程Course,主码是课程号Cno 3.  成绩SC,主码是Sno和 ...

  4. 面向对象---prototype、__proto__、实例化对象三者之间的关系

    1.构造函数 a.什么是构造函数? 解释:通过关键字new 创建的函数叫做构造函数 作用:用来创建一个对象 废话少说直接上代码,首先我们还是创建一个构造函数人类 然后我们在创建两个实例,一个凡尘 一个 ...

  5. hashCode和equals的区别

    关注公众号,大家可以在公众号后台回复“博客园”,免费获得作者 Java 知识体系/面试必看资料. 有面试官会问:你重写过 hashcode 和 equals 么,为什么重写equals时必须重写has ...

  6. [Apache Pulsar] 企业级分布式消息系统-Pulsar快速上手

    Pulsar快速上手 前言 如果你还不了解Pulsar消息系统,可以先看上一篇文章 企业级分布式消息系统-Pulsar入门基础 Pulsar客户端支持多个语言,包括Java,Go,Pytho和C++, ...

  7. Linux fuser工具使用方法介绍

    引言 fuser是linux中较常用的工具,"fuser"——从其名称我们可以看出该工具的用途:查询给定文件或目录的用户或进程信息. 除查询文件相关信息之外,使用fuser还能向进 ...

  8. 使用mybatis实现分页查询示例代码分析

    *******************************************分页查询开始*************************************************** ...

  9. 【0729 | Day 3】Python基础(一)

    Part 1 变量 一.什么是变量? 字面意思:变化的量. 而在计算机中,我们可以将它理解为世间万物变化的状态. 二.为什么要有变量? 首先,无论是我们还是计算机都需要变量来记录发生的状态的变化,其次 ...

  10. 素数筛法(Eratosthenes筛法)

    介绍 Eratosthenes筛法,又名埃氏筛法,对于求1~n区间内的素数,时间复杂度为n log n,对于10^6^ 以内的数比较合适,再超出此范围的就不建议用该方法了. 筛法的思想特别简单: 对于 ...