「Luogu 1349」广义斐波那契数列
Portal
Portal1: Luogu
Description
广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列。今给定数列的两系数\(p\)和\(q\),以及数列的最前两项\(a_1\)和\(a_2\),另给出两个整数\(n\)和\(m\),试求数列的第\(n\)项\(a_n\)除以\(m\)的余数。
Input
输入包含一行6个整数。依次是\(p\),\(q\),\(a_1\),\(a_2\),\(n\),\(m\),其中在\(p\),\(q\),\(a_1\),\(a_2\)整数范围内,\(n\)和\(m\)在长整数范围内。
Output
输出包含一行一个整数,即\(a_n\)除以\(m\)的余数。
Sample Input
1 1 1 1 10 7
Sample Output
6
Hint
数列第\(10\)项是\(55\),除以\(7\)的余数为\(6\)。
Solution
基本斐波那契数列矩阵是\(T = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}\);
广义斐波那契数列矩阵是\(F = \begin{bmatrix} p & 1 \\ q & 0 \end{bmatrix}\)。
那么要求的就是:
\]
然后就可以用矩阵快速幂来解决了。
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
struct Matrix {
LL a[2][2];
inline void clear() {//矩阵清空
memset(a, 0, sizeof(a));
}
inline void init() {//单位矩阵
memset(a, 0, sizeof(a));
for (int i = 0; i < 2; i++)
a[i][i] = 1;
}
};
LL n, p, q, a1, a2, mod;
Matrix F, a, ans;
inline LL Plus(LL x, LL y) {
x += y;
if (x >= mod) x -= mod;
return x;
}
inline LL power(LL x, LL y) {//快速幂
LL ret = 0;
while (y) {
if (y & 1) ret = (ret + x) % mod;
x = (x + x) % mod;
y >>= 1;
}
return ret;
}
Matrix operator * (Matrix a, Matrix b) {//矩阵乘法
Matrix ret;
ret.clear();
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)
for (int k = 0; k < 2; k++)
ret.a[i][j] = Plus(ret.a[i][j] % mod, power(a.a[i][k], b.a[k][j])% mod) % mod;
return ret;
}
inline Matrix Matrix_Power(Matrix a, LL x) {//矩阵快速幂
Matrix ret;
ret.init();
while (x) {
if (x & 1) ret = ret * a;
x >>= 1;
a = a * a;
}
return ret;
}
int main() {
scanf("%lld%lld%lld%lld%lld%lld", &q, &p, &a1, &a2, &n, &mod);
F.a[0][0] = a1, F.a[0][1] = a2;
a.a[0][0] = 0, a.a[1][0] = 1, a.a[0][1] = p; a.a[1][1] = q;
ans = F * Matrix_Power(a, n - 2);
printf("%lld\n", ans.a[0][1] % mod);
return 0;
}
「Luogu 1349」广义斐波那契数列的更多相关文章
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- 洛谷P1349 广义斐波那契数列(矩阵快速幂)
P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 矩阵乘法快速幂 codevs 1574 广义斐波那契数列
codevs 1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如 ...
- HDU 5451 广义斐波那契数列
这道题目可以先转化: 令f(1) = 5+2√6 f(2) = f(1)*(5+2√6) ... f(n) = f(n-1)*(5+2√6) f(n) = f(n-1)*(10-(5-2√6)) = ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
- 洛谷——P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...
- codevs1574广义斐波那契数列
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p* ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
随机推荐
- HTML5 video视频字幕的使用和制作
一.video支持视频格式: 以下是三种最常用的格式 1. ogg格式:带有Theora视频编码(免费)+Vorbis音频编码的Ogg文件(免费) 支持的浏览器:firefox.chrome.oper ...
- 【原创】(八)Linux内存管理 - zoned page frame allocator - 3
背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...
- Redis 3.0中文版学习(一)
网址:http://wiki.jikexueyuan.com/project/redis-guide/entry-to-master-a.html http://www.yiibai.com/redi ...
- Linux power supply class(1)_软件架构及API汇整【转】
1. 前言 power supply class为编写供电设备(power supply,后面简称PSY)的驱动提供了统一的框架,功能包括: 1)抽象PSY设备的共性,向用户空间提供统一的API. 2 ...
- 面试官:"准备用HashMap存1w条数据,构造时传10000还会触发扩容吗?"
// 预计存入 1w 条数据,初始化赋值 10000,避免 resize. HashMap<String,String> map = new HashMap<>(10000) ...
- 雷子聊并发编程(001):基础知识之串行&并行&并发
前言 编写正确的程序很难,而编写正确的并发程序则难上加难.与串行程序相比,在并发程序中存在更多容易出错的地方.那么,为什么还要编写并发程序?原因很简单,能充分发挥与利用多处理器系统的强大计算能力. 在 ...
- hdfs 文件系统命令操作
hdfs 文件系统命令操作 [1]hdfs dfs -ls [目录]. 显示所有文件 hdfs dfs -ls -h /user/20170214.txt 显示文件时,文件大小以人易读的形式显示 [2 ...
- day29作业
作业 写一个基于TCP协议套接字,服务端实现接收客户端的连接并发. 基于多线程实现 # server.py import socket from threading import Thread def ...
- Java基础(十五)异常(Exception)
1.处理错误的要求 如果由于出现错误而使得某些操作没有完成,程序应该: 返回到一种安全状态,并能够让用户执行一些其他的命令. 允许用户保存所有操作的结果,并以妥善的方式终止程序. 2.程序中可能出现的 ...
- Java基础(九)反射(reflection)
1.反射库(reflection library)提供了一个非常丰富且精心设计的工具集,以便编写能够动态操纵Java代码的程序. 能够分析类能力的程序称为反射(reflection).反射机制的功能极 ...