此处纯粹作为个人学习使用,原文连接:https://www.jianshu.com/p/dc24e54aec81

这篇文章是借鉴很多博文的,作为一个关于slim库的总结

导入slim模块

import tensorflow.contrib.slim as slim

定义slim的变量

#Model Variables
weights = slim.model_variable('weights', shape = [10, 10, 3, 3],
initializer = tf.truncated_normal_initializer(stddev=0.1)
regularizer = slim.l2_regularizer(0.05),
device='/CPU:0')
model_variables = slim.get_model_variables() #获取变量吗? # Regular variables
my_var = slim.variable('my_var", shape=[20, 1],
initializer = tf.zeros_initializer())
regular_variables_and_model_variables = slim.get_variables()

# 这里的model_variable是作为模型参数保存的,variable是局部变量,不会保存。

Slim中实现一个层

input = ...
net = slim.conv2d(input, 128, [3,3], scope='conv1_1') # 代码重用
net = slim.repeat(net, 3, slim.conv2d, 256, [3,3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool2') # 处理不同参数情况
x = slim.fully_connected(x, 32, scope='fc/fc_1')
x = slim.fully_connected(x, 64, scope ='fc/fc_2')
x = slim.fuly_connected(x, 128, scope = 'fc/fc_3')
# or
slim.stack(x, slim.fully_connected, [32, 64, 128], scope='fc') # 普通方法
x = slim.conv2d(x, 32, [3, 3], scope='core/core_1')
x = slim.conv2d(x, 32, [1, 1], scope='core/core_2')
x = slim.conv2d(x, 64, [3, 3], scope='core/core_3')
x = slim.conv2d(x, 64, [1, 1], scope='core/core_4') # 简便方法:
slim.stack(x, slim.conv2d, [(32, [3,3]), (32, [1,1]), (64, [3,3]), (64, [1,1]), scopre='core')

定义相同参数的简化

with slim.arg_scope([slim.conv2d],  padding='SAME',
weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
net = slim.conv2d(inputs, 64, [11, 11], scope='conv1')
net = slim.conv2d(net, [11,11], padding=' VALID', scope='conv2')
net = slim.conv2d(net, 256, [11, 11], scope='conv3') # arg_scope的嵌套
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.rely,
weights_initializer=tf.truncated_normal_initialier(stddev=0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
with slim.arg_scope([slim.conv2d], stride=1, padding='SAME'):
net = slim.conv2d(inputs, 64, [11, 11], 4, padding='VALID', scope='conv1')
net = slim.conv2d(net, 256, [5, 5],
weights_initializer=tf.truncated_normal_initializer(stddev=0.03),
scope='conv2')
net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc')

训练模型

loss = slim.losses.softmax_cross_entropy(predictions, labels)
# 自定义loss模型
# define the loss functions and get the total loss.
classification_loss = slim.losses.softmax_cross_entropy(scene_predictions, scene_labels)
sum_of_squares_loss = slim.losses.sum_of_squares(depth_predictions, depth_labels)
pose_loss = MyCustomLossFunction(pose_predictions, pose_labels)
slim.losses.add_loss(pose_loss) # Letting TF-Slim know about the additional loss. # The following two ways to compute the total loss are equivalent:
regularization_loss = tf.add_n(slim.losses.get_regularization_losses())
total_loss1 = classification_loss + sum_of_squares_loss + poses_loss + regularization_loss

# slim读取保存模型的方法

# Create some variables.
v1 = slim.variable(name='v1', ...)
v2 = slim.variable(name=''nested/v2', ...)
... # Get list of variables to restore (which contains only 'v2')
variables_to_restore = slim.get_variables_by_name("v2") # Create the saver which will be used to restore the varialbes.
restorer = tf.train.Saver(variables_to_restore) with tf.Session() as sess:
# Restore variables from disk.
restores.restore(sess, "/tmp/model.ckpt")
print("Model restored.") # 为模型添加变量前缀
# 假设我们定义的网络变量是conv1/weights, 而从VGG记载的变量名为#vgg16/conv1/weights, 正常load肯定会报错
def name_in_checkpoint(var):
return 'vgg16/' + var.op.name variables_to_restore = slim.get_model_variables()
variables_to_restore = {name_in_checkpoint(var):var for var in variables_to_restore}
restorer = tf.train.Saver(variables_to_restore) with tf.Session() as sess:
# Restore variables from disk.
restorer.restore(sess, "/tmp/model.ckpt")

训练模型

在该例中, slim.learning.train根据train_op计算损失、应用梯度step. logdir指定checkpoints和event文件的存储路径。我们可以限制梯度step到任何数值。这里我们采用1000步。最后, save_summaries_secs=300表示每5分钟计算一次summaries, save_interval_secs=600表示每10分钟保存一次模型的checkpoint

g = tf.Graph()

# Create the model and specify the losses...
... total_loss = slim.losses.get_total_loss()
optimizer = tf.train.GradientDescentOptimizer(learning_rate) # create_train_op ensures that each time we ask for the loss, the update_ops
# are run and the gradients being computed are applied too.
train_op = slim.learning.create_train_op(total_loss, optimizer)
logdir = ... # Where checkpoints are stored. slim.learning.train(
train_op,
logdir,
number_of_steps=1000,
save_summaries_secs=300,
save_interval_secs=600)

Fine-Tuning a Model on a different task

假设我们有一个已经预训练好的VGG16的模型。这个模型是在拥有1000分类的ImageNet数据集上进行训练的。但是,现在我们想把它应用只具有20个分类的Pascal VOC数据集上。为了能这样做,我们可以通过利用除最后一些全连接层的其它预训练模型来初始化新模型的达到目的:

# Load the Pascal VOC data
image, label = MyPascalVocDataLoader(...)
images, labels = tf.train.batch([image, label], batch_size = 32) # Create the model
predictions = vgg.vgg_16(images)
train_op = slim.learning.create_train_op(...) # Specify where the Model, trained on ImageNet, was saved.
model_path = '/path/to/pre_trained_on_imagenet.checkpoint'
metric_ops.py
# Specify where the new model will live:
log_dir = from_checkpoint_'/path/to/my_pascal_model_dir/' # Restore only the convolutional layers:
variables_to_restore = slim.get_variables_to_restore(exclude=['fc6', 'fc7', 'fc8'])
init_fn = assign_from_checkpoint_fn(model_path, variables_to_restore) # Start training.
slim.learning.train(train_op, log_dir, init_fn=init_fn)

evaluation loop

import tensorflow as tf

slim = tf.contrib.slim

# Load the data
images, labels = load_data(...) # Define the network
predictions = MyModel(images) # Choose the metrics to compute:
names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
'accuracy': slim.metrics.accuracy(predictions, labels),
'precision': slim.metrics.precision(predictions, labels),
'recall': slim.metrics.recall(mean_relative_errors, 0.3),
}) # Create the summary ops such that they also print out to std output:
summary_ops = []
for metric_name, metric_value in names_to_values.iteritems():
op = tf.summary.scalar(metric_name, metric_value)
op = tf.Print(op, [metric_value], metric_name)
summary_ops.append(op) num_examples = 10000
batch_size = 32
num_batches = math.ceil(num_examples / float(batch_size)) # Setup the global step.
slim.get_or_create_global_step() output_dir = ... # Where the summaries are stored.
eval_interval_secs = ... # How often to run the evaluation.
slim.evaluation.evaluation_loop(
'local',
checkpoint_dir,
log_dir,
num_evals=num_batches,
eval_op=names_to_updates.values(),
summary_op=tf.summary.merge(summary_ops),
eval_interval_secs=eval_interval_secs)

tensorflow slim代码使用的更多相关文章

  1. 使用笔记:TF辅助工具--tensorflow slim(TF-Slim)

    如果抛开Keras,TensorLayer,tfLearn,tensroflow 能否写出简介的代码? 可以!slim这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身” 一.简介 slim ...

  2. 解决TensorFlow最新代码编译错误问题

    老是有个习惯,看到开源代码更新了,总是想更新到最新版,如果置之不理的话,就感觉自己懒惰了或有的不负责任了,这个也可能是一种形式的强迫症吧: 前几天晚上git pull TensorFlow,完事后也没 ...

  3. tensorflow没有代码提示的问题

    在tensorflow包下的__init__.py文件中定义了一个contrib变量表示tensorflow.contrib包下的内容,但是tensorflow.contrib这个包是懒加载的,也就是 ...

  4. google tensorflow bert代码分析

    参考网上博客阅读了bert的代码,记个笔记.代码是 bert_modeling.py 参考的博客地址: https://blog.csdn.net/weixin_39470744/article/de ...

  5. tensorflow训练代码

    from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_dat ...

  6. tensorflow TensorArray 代码例子

    import tensorflow as tf import numpy as np B=3 D=4 T=5 tf.reset_default_graph() xs=tf.placeholder(sh ...

  7. Tensorflow模型代码调试问题

    背景: 不知道大家有没有这样的烦恼:在使用Tensorflow搭建好模型调试的过程中,经常会碰到一些问题,当时花了不少时间把这个问题解决了,一段时间后,又出现了同样的问题,却怎么也不记得之前是怎么解决 ...

  8. TensorFlow Slim 的常用操作

    https://blog.csdn.net/mzpmzk/article/details/81706379

  9. tensorflow slim训练以及到安卓部署教程

    https://blog.csdn.net/chenyuping333/article/details/81537551 https://blog.csdn.net/u012328159/articl ...

随机推荐

  1. windows命令行pip报错解决的方法

    今天在新电脑安装python,发现pip无效了,于是乎百度了很多方法,发现原因是pip升级导致的 解决办法,卸载pip重新安装 可以首先执行  python -m ensurepip  然后执行 py ...

  2. javabean的内省(Introspector)

    内省是 Java 语言对 Bean 类属性.事件的一种缺省处理方法.例如类 A 中有属性 name, 那我们可以通过 getName,setName 来得到其值或者设置新的值. 通过 getName/ ...

  3. 微软、IBM、GitLab 等大厂全部到齐的 OCS 第一天有什么看点?

    在本周一的推文中我们大致介绍了下 Open Core 峰会及到场嘉宾,(≧▽≦) 当然还有 Nebula Graph 在会场的展位位置图,本文我们来看看 Open Core 峰会第一天有哪些值得一看的 ...

  4. C# 判断点是否在矩形框内

    欢迎加群交流 QQ群 830426796 用 System.Drawing.Drawing2D.GraphicsPath 和 Region 类联合起来,然后用 Region.IsVisible(poi ...

  5. Python中为什么不能用可变对象作为默认参数的值

    def func(numbers = [], num=1): numbers.append(num) for number in numbers: print(number) func() >& ...

  6. ArcGIS api for JavaScript 3.27 聚合(cluster)

    基础聚合:只聚合,不显示聚合的数量 // Basic Clustering require([ "esri/map", "esri/layers/FeatureLayer ...

  7. 调试Android Framework的Java部分代码

    DebugAndroidFramework 说明:调试Android Framework的Java部分代码,以调试源码android-28为例,需要一个API 28的模拟器配合使用. 一.下载源码 下 ...

  8. java的异常抛出throws和throw的简单使用

    前提: 当在程序测试时,如果你需要定义一个自己的异常,而非现在已经存在的异常,这个时候你需要用到throws和throw,try-catch只是一个简单的捕获异常的过程. 代码如下: package ...

  9. retrying failed action with response code: 403

    0x00 Event [2019-09-24T19:22:31,655][INFO ][logstash.outputs.elasticsearch] retrying failed action w ...

  10. 037.[转] springboot 配置多个数据源

    1.在application.properties文件 配置两个数据源 #默认使用 tomcat-jdbc spring.datasource.type=org.apache.tomcat.jdbc. ...