题解 UVA12716 GCD等于XOR GCD XOR
规律题,打表找规律即可发现
a xor b >= a - b >= gcd(a, b),
如果 a xor b = gcd(a, b) = c 则 c = a - b
枚举倍数c和a判断b即可
但是我主要想讲的是这道题要注意的,就是在跑循环时,一定要注意数组是否越界,比如
int a[maxn];
scanf("%d",&T);
for(int i=1;i<=maxn;++i){
a[i]=i;
}
这样写会造成你读入的T被覆盖,导致输出超限,因为数组a[maxn]不能存数,所以循环不能跑到maxn
这样写就是对的
int a[maxn];
for(int i=1;i<=maxn;++i){
a[i]=i;
}
scanf("%d",&T);
由于你的T是后面读入的,所以不造成影响。
所以各位csper们,要注意预处理千万不要越界!
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=30000010;
long long ans[maxn+10];//保证不越界
int T,n;
int main(){
for(int c=1;c<=maxn;++c){
for(int a=c*2;a<=maxn;a+=c){
int b=a-c;
if((a^b)==c) ans[a]++;
}
}
for(int i=1;i<=maxn;++i){
ans[i]+=ans[i-1];
}
scanf("%d",&T);
for(int i=1;i<=T;++i){
scanf("%d",&n);
printf("Case %d: %d\n",i,ans[n]);
}
return 0;
}
题解 UVA12716 GCD等于XOR GCD XOR的更多相关文章
- UVA - 12716 GCD XOR(GCD等于XOR)(数论)
题意:输入整数n(1<=n<=30000000),有多少对整数(a, b)满足:1<=b<=a<=n,且gcd(a,b)=a XOR b. 分析:因为c是a的约数,所以枚 ...
- HDU 5656 CA Loves GCD 01背包+gcd
题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5656 bc:http://bestcoder.hdu.edu.cn/contests/con ...
- UVA 1642 Magical GCD(经典gcd)
题意:给你n(n<=100000)个正整数,求一个连续子序列使序列的所有元素的最大公约数与个数乘积最大 题解:我们知道一个原理就是对于n+1个数与n个数的最大公约数要么相等,要么减小并且减小至少 ...
- 学习:数学----gcd及扩展gcd
gcd及扩展gcd可以用来求两个数的最大公因数,扩展gcd甚至可以用来求一次不定方程ax+by=c的解 辗转相除法与gcd 假设有两个数a与b,现在要求a与b的最大公因数,我们可以设 a=b*q+ ...
- 与数论的厮守05:gcd(a,b)=gcd(b,a mod b)的证明
\[设c=gcd(a,b),那么a可以表示为mc,b可以表示为nc的形式.然后令a=kb+r,那么我们就\\ 只需要证明gcd(b,r)=c即可.{\because}r=a-kb=mc-knc,{\t ...
- 欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去
写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在 ...
- iOS边练边学--GCD的基本使用、GCD各种队列、GCD线程间通信、GCD常用函数、GCD迭代以及GCD队列组
一.GCD的基本使用 <1>GCD简介 什么是GCD 全称是Grand Central Dispatch,可译为“牛逼的中枢调度器” 纯C语言,提供了非常多强大的函数 GCD的优势 G ...
- Solve Equation gcd(x,y)=gcd(x+y,lcm(x,y)) gcd(x,y)=1 => gcd(x*y,x+y)=1
/** 题目:Solve Equation 链接:http://acm.hnust.edu.cn/JudgeOnline/problem.php?id=1643 //最终来源neu oj 2014新生 ...
- hdu 5974 A Simple Math Problem gcd(x,y)=gcd((x+y),lcm(x,y))
题目链接 题意 现有\[x+y=a\\lcm(x,y)=b\]找出满足条件的正整数\(x,y\). \(a\leq 2e5,b\leq 1e9,数据组数12W\). 思路 结论 \(gcd(x,y)= ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (数论 GCD(a,b) = GCD(a,b-a))
传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ ...
随机推荐
- c#小灶——初识c#
提到c#,就不得不说.net,.net是微软开发的一个平台,简单来说,在这个平台上,可以编写.运行程序.可能很多人觉得这个平台离我们很遥远,其实不然,这个平台就一直在我们的windows操作系统里,默 ...
- 重入锁的学习 (ReentrantLock)
重入锁 :(ReentrantLock) 上锁 用reentrantLock.lock 方法 解锁 用reentrantLock.unlock 方法 上锁和解锁 必须配对 可以多重上锁 Reentr ...
- 深入Apache NiFi 之源码学习
前言 要问 Hortonworks 这家公司最有产品力的产品是什么,我觉得是 Apache NiFi.去年Cloudera 和 Hortonworks 合并之后,以 Cloudera 为主,两家公司进 ...
- git的使用学习笔记
一.git Git 是一个开源的分布式版本控制系统,项目版本管理工具,可以在本地提交修改再合并到主分支上,最为出色的是它的合并跟踪(merge tracing)能力. 可以通过Linux命令进行增加, ...
- Spring Boot 整合 JPA 使用多个数据源
介绍 JPA(Java Persistence API)Java 持久化 API,是 Java 持久化的标准规范,Hibernate 是持久化规范的技术实现,而 Spring Data JPA 是在 ...
- abp(net core)+easyui+efcore实现仓储管理系统——使用 WEBAPI实现CURD (十三)
abp(net core)+easyui+efcore实现仓储管理系统目录 abp(net core)+easyui+efcore实现仓储管理系统——ABP总体介绍(一) abp(net core)+ ...
- 通过Blazor使用C#开发SPA单页面应用程序(2)
今天我们尝试创建一个默认的Blazor应用. 1.安装 .Net Core 3.0需要Visual Studio 2019 的支持. 安装.Net Core 3.0 预览版 SDK版本,注意预览版对应 ...
- Java回收机制概述
Java技术体系中所提倡的 自动内存管理 最终可以归结为自动化地解决了两个问题:给对象分配内存 以及 回收分配给对象的内存,而且这两个问题针对的内存区域就是Java内存模型中的 堆区. 垃圾回收机制的 ...
- 【KakaJSON手册】02_JSON转Model_02_数据类型
由于JSON格式的能表达的数据类型是比较有限的,所以服务器返回的JSON数据有时无法自动转换成客户端想要的数据类型. 比如服务器返回的时间可能是个毫秒数1565480696,但客户端想要的是Date类 ...
- 如何删除GIT仓库中的敏感信息
如何删除GIT仓库中的敏感信息 正常Git仓库中应该尽量不包含数据库连接/AWS帐号/巨大二进制文件,否则一旦泄漏到Github,这些非常敏感信息会影响客户的信息安全已经公司的信誉.公司可能其它还有相 ...