规律题,打表找规律即可发现

a xor b >= a - b >= gcd(a, b),

如果 a xor b = gcd(a, b) = c 则 c = a - b

枚举倍数c和a判断b即可

但是我主要想讲的是这道题要注意的,就是在跑循环时,一定要注意数组是否越界,比如

int a[maxn];
scanf("%d",&T);
for(int i=1;i<=maxn;++i){
a[i]=i;
}

这样写会造成你读入的T被覆盖,导致输出超限,因为数组a[maxn]不能存数,所以循环不能跑到maxn

这样写就是对的

int a[maxn];
for(int i=1;i<=maxn;++i){
a[i]=i;
}
scanf("%d",&T);

由于你的T是后面读入的,所以不造成影响。

所以各位csper们,要注意预处理千万不要越界!

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=30000010;
long long ans[maxn+10];//保证不越界
int T,n;
int main(){
for(int c=1;c<=maxn;++c){
for(int a=c*2;a<=maxn;a+=c){
int b=a-c;
if((a^b)==c) ans[a]++;
}
}
for(int i=1;i<=maxn;++i){
ans[i]+=ans[i-1];
}
scanf("%d",&T);
for(int i=1;i<=T;++i){
scanf("%d",&n);
printf("Case %d: %d\n",i,ans[n]);
}
return 0;
}

题解 UVA12716 GCD等于XOR GCD XOR的更多相关文章

  1. UVA - 12716 GCD XOR(GCD等于XOR)(数论)

    题意:输入整数n(1<=n<=30000000),有多少对整数(a, b)满足:1<=b<=a<=n,且gcd(a,b)=a XOR b. 分析:因为c是a的约数,所以枚 ...

  2. HDU 5656 CA Loves GCD 01背包+gcd

    题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5656 bc:http://bestcoder.hdu.edu.cn/contests/con ...

  3. UVA 1642 Magical GCD(经典gcd)

    题意:给你n(n<=100000)个正整数,求一个连续子序列使序列的所有元素的最大公约数与个数乘积最大 题解:我们知道一个原理就是对于n+1个数与n个数的最大公约数要么相等,要么减小并且减小至少 ...

  4. 学习:数学----gcd及扩展gcd

    gcd及扩展gcd可以用来求两个数的最大公因数,扩展gcd甚至可以用来求一次不定方程ax+by=c的解   辗转相除法与gcd 假设有两个数a与b,现在要求a与b的最大公因数,我们可以设 a=b*q+ ...

  5. 与数论的厮守05:gcd(a,b)=gcd(b,a mod b)的证明

    \[设c=gcd(a,b),那么a可以表示为mc,b可以表示为nc的形式.然后令a=kb+r,那么我们就\\ 只需要证明gcd(b,r)=c即可.{\because}r=a-kb=mc-knc,{\t ...

  6. 欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去

    写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在 ...

  7. iOS边练边学--GCD的基本使用、GCD各种队列、GCD线程间通信、GCD常用函数、GCD迭代以及GCD队列组

    一.GCD的基本使用 <1>GCD简介 什么是GCD 全称是Grand Central Dispatch,可译为“牛逼的中枢调度器” 纯C语言,提供了非常多强大的函数   GCD的优势 G ...

  8. Solve Equation gcd(x,y)=gcd(x+y,lcm(x,y)) gcd(x,y)=1 => gcd(x*y,x+y)=1

    /** 题目:Solve Equation 链接:http://acm.hnust.edu.cn/JudgeOnline/problem.php?id=1643 //最终来源neu oj 2014新生 ...

  9. hdu 5974 A Simple Math Problem gcd(x,y)=gcd((x+y),lcm(x,y))

    题目链接 题意 现有\[x+y=a\\lcm(x,y)=b\]找出满足条件的正整数\(x,y\). \(a\leq 2e5,b\leq 1e9,数据组数12W\). 思路 结论 \(gcd(x,y)= ...

  10. Codeforces Round #554 (Div. 2) C. Neko does Maths (数论 GCD(a,b) = GCD(a,b-a))

    传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ ...

随机推荐

  1. HttpsUtils

    package io.renren.modules.jqr.util; import java.io.BufferedReader; import java.io.InputStream; impor ...

  2. powermockito单元测试之深入实践

    概述 由于最近工作需要, 在项目中要做单元测试, 以达到指定的测试用例覆盖率指标.项目中我们引入的powermockito来编写测试用例, JaCoCo来监控单元测试覆盖率.关于框架的选择, 网上讨论 ...

  3. 大型系列课程之-七夕告白之旅vbs篇

    也许,世间所有的美好的东西,都是需要仪式感的,遇到了一年一度的七夕节,怎么过这个节日,成了很多心中有爱的人关注的事情,七夕不浪漫,人间不值得,七夕,发源于中国,这个美好的节日,来自动人的神话故事传说牛 ...

  4. 爬虫环境搭建及 scrapy 启动

    创建虚拟环境 C:\Users\Toling>mkvirtualenv article 这个是普通的创建虚拟环境,但是实际开发中可能会使用python2或python3所以我们需要指定开发的环境 ...

  5. spring学习笔记之---bean属性注入

    bean属性注入 (一)构造方法的属性注入 1.Student.java package entity; public class Student { private String name; pri ...

  6. cdh5-MariaDB 配置(暂未排版)

    在多数分布MariaDB的设施默认设置使用保守的缓冲区的大小和内存使用. 使用保守的缓冲区大小和内存使用率 Cloudera的数据库管理服务器,监控活动,报告管理,Cloudera 导航,Hive 的 ...

  7. spring aop 解决模糊查询参数 % - /等特殊符号问题

    import com.hsq.common.utils.StringUtil;import org.aspectj.lang.ProceedingJoinPoint;import org.aspect ...

  8. 3、数组的声明及初始化(test1.java)

    今天学习了,一位数组和二维数组,先学习了数组的申请,数组的初始化,数组的拷贝等.对于数组我认为,和C\C++中的数组,没有什么太大的区别,但是在JAVA中,大家都知道JAVA是面向对象的编程语言,每一 ...

  9. IBM实习工作(一)

    2019.1.21 今天的任务是完成会计是否在岗配置表格增加操作记录,任务描述:1.  [会计是否在岗配置] 查询结果界面: 修改人编码/修改人/修改时间 字段:2.      字段取值为[会计是否在 ...

  10. Transformation HDU - 4578(线段树——懒惰标记的妙用)

    Yuanfang is puzzled with the question below: There are n integers, a 1, a 2, …, a n. The initial val ...