51nod 1060 最复杂的数(数论,反素数)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1060
题解:可以去学习一下反素数。
#include <iostream>
#include <cstring>
#define inf 1000000000000000007
using namespace std;
typedef unsigned long long ull;
const int M = 1e6 + 10;
ull n , dp[M];
int prime[16] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
void dfs(int deep , ull sum , int num) {
dp[num] = min(dp[num] , sum);
for(int i = 1 ; i <= 63 ; i++) {
if(sum > 1e18 / prime[deep]) break;
dfs(deep + 1 , sum * prime[deep] , num * (i + 1));
sum *= prime[deep];
}
}
int main() {
int t;
scanf("%d" , &t);
for(int i = 0 ; i < M ; i++) dp[i] = -inf;
dfs(0 , 1 , 1);
while(t--) {
scanf("%lld" , &n);
int ans;
for(int i = M - 1 ; i >= 1 ; i--) {
if(dp[i] <= n && dp[i] != 0) {ans = i; break;}
}
printf("%lld %d\n" , dp[ans] , ans);
}
return 0;
}
51nod 1060 最复杂的数(数论,反素数)的更多相关文章
- 51nod 1060 最复杂的数 反素数
1060 最复杂的数 基准时间限制:1 秒 空间限制:131072 KB 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数. 例如:12的约数为:1 2 3 4 6 ...
- 51nod 1060 最复杂的数
把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数. 例如:12的约数为:1 2 3 4 6 12,共6个数,所以12的复杂程度是6.如果有多个数复杂度相等,输出最 ...
- zoj2562:搜索+数论(反素数)
题目大意:求n以内因子数量最多的数 n的范围为1e16 其实相当于求n以内最大的反素数... 由素数中的 算数基本原理 设d(a)为a的正因子的个数,则 d(n)=(a1+1)(a2+1)..... ...
- HDU 4542 小明系列故事——未知剩余系 (数论|反素数)
分析 kuangbin的blog已经讲的很好了,我做一点补充 1.当做x*y>z的比较时,如果x \(\ast\) y过大,可以写成x>z/y 2.分解质因数时选择用f[][0]保存质数, ...
- 1060 最复杂的数(反素数玄学dfs)
1060 最复杂的数 题目来源: Ural 1748 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中 ...
- 51nod 1061 最复杂的数V2
题目链接 51nod 1061 题面简述 求\([1, n]\)中约数个数最多的数. \(n \le 10^{200}\) 题解 首先,答案一定是一个反素数. 什么是反素数? 一个正整数\(x\)是反 ...
- 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)
\([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...
- [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]
[luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...
- BZOJ1053 [HAOI2007]反素数ant 数论
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...
随机推荐
- QQ第三方登录逻辑(微信,微博等同)
实现过程:生成qq扫码登录连接(需要注册,链接里有几个参数需要按照开发文档的格式进行拼接,要后端完成),点击QQ登录按钮,前端Vue发送axios请求,后端收到请求把生成的QQ登录链接发送给vue,v ...
- 使用Arthas 获取Spring ApplicationContext还原问题现场
## 背景 最近来了个实习僧小弟,安排他实现对目标网站 连通性检测的小功能,简单讲就是将下边的shell 脚本换成Java 代码来实现 ``` 1#!/bin/bash 2URL="http ...
- 进程间通信与ipcs使用7例
进程间通信(IPC, inter-process communication)实现进程间消息的传递,对于用户地址空间相互独立的两个进程而言,实现通信可以通过以下方式: 由内核层面分配内存,两进程共享该 ...
- Docker 核心技术
docker是什么?为什么会出现? 容器虚拟化技术:轻量级的虚拟机(但不是虚拟机) 开发:提交代码 ——> 运维:部署 在这中间,因为环境和配置,出现问题 ——> 把代码/配置/系统/数据 ...
- ssh的执行流畅
SSH运行流程 1. 服务器启动,创建Struts2的Filter控制器,创建Spring容器对象. 实例化Struts2控制器时,加载struts.xml,struts-default.xml,de ...
- JavaWeb配置详解(结合框架SpringMVC)
详解 先说一说常识性的东西,我们的JavaWeb程序运行一开始走的是web.xml文件,这是我们的核心文件,可以说没有web.xml文件我们就无法运行项目,这个文件长什么样子,读者自己新建一个web项 ...
- 【java提高】(18)---静态内部类和非静态内部类
java提高](18)-静态内部类和非静态内部类 定义 放在一个类的内部的类我们就叫内部类. 自己从开发到现在其实用到内部类主要在两个地方会考虑用内部类: 1.使用静态内部类的单例模式 2.将Json ...
- 使用 .NET CORE 创建 项目模板,模板项目,Template
场景:日常工作中,你可能会碰到需要新建一个全新的解决方案的情况(如公司新起了一个新项目,需要有全新配套的后台程序),如果公司内部基础框架较多.解决方案需要DDD模式等,那么从新起项目到各种依赖引用到能 ...
- web小知识点
写在前面: 该篇是个人平时对web前端小知识点的总结,会不定时更新...... 如有错误,敬请批评指正. 正文: 1.WWW是World Wide Web的缩写. 2.HTML(Hyper Text ...
- JMM浅析
背景 学习Java并发编程,JMM是绕不过的槛.在Java规范里面指出了JMM是一个比较开拓性的尝试,是一种试图定义一个一致的.跨平台的内存模型.JMM的最初目的,就是为了能够支多线程程序设计的,每个 ...