cogs 1377. [NOI2011] NOI嘉年华 (dp
题意:给你n个活动的起止时间,要你从中选一些活动在2个会场安排(不能有两个活动在两个会场同时进行),使活动较少的会场活动数最大,以及在某个活动必须选择的前提下,求该答案。
思路:由于n很小,时间很大,先将时间离散化,num[l][r]表示全部在[l,r]内的活动个数,pre[i][j]表示前i的时间内给一边j个另一边最多有几个,则用1<=k<=i更新pre[i][j]=max(pre[k][j]+num[k][j],pre[k][j-num[k][i]]),第一问答案是min(pre[time][k],k)中的最大值
第二问,相当于一段区间s[i],t[i]必选,对于l<=s[i],r>=t[i],算出f[l][r] = min(x+y,pre[l][x]+num[l][r]+suf[r][y])中的最大值,x+y关于x,y单增,pre[l][x]+num[l][r]+suf[r][y]关于x,y单减,x,y不会同时变大或变小,所以从小到大枚举x时,y从大到小...
#include<bits/stdc++.h>
#define fo(x) freopen(x".in","r",stdin); freopen(x".out","w",stdout);
using namespace std;
inline int read(){
char ch=getchar();
int res=,f=;
while(!isdigit(ch))f^=(ch=='-'),ch=getchar();
while(isdigit(ch))res=(res+(res<<)<<)+(ch^),ch=getchar();
return res*f;
}
const int N=;
int n,s[N],t[N],a[N],cnt,pre[N][N],suf[N][N],f[N][N],num[N][N];
inline void chemx(int &a,int b){
a=a>b?a:b;
}
inline void chemn(int &a,int b){
a=a>b?b:a;
}
#define calc(a,b) (min((a+b),(pre[l][a]+num[l][r]+suf[r][b])))
int main(){
fo("noi2011_show");
n=read();
for(int i=;i<=n;i++)s[i]=read(),a[++cnt]=s[i],t[i]=read()+s[i],a[++cnt]=t[i];
sort(a+,a+cnt+);
cnt=unique(a+,a+cnt+)-a-;
for(int i=;i<=n;i++){
s[i]=lower_bound(a+,a+cnt+,s[i])-a;
t[i]=lower_bound(a+,a+cnt+,t[i])-a;
for(int l=;l<=s[i];l++)
for(int r=t[i];r<=cnt;r++)num[l][r]++;
}
for(int i=;i<=cnt;i++)
for(int j=;j<=n;j++)pre[i][j]=suf[i][j]=-1e9;
for(int i=;i<=cnt;i++)
for(int j=;j<=num[][i];j++)
for(int k=;k<=i;k++){
chemx(pre[i][j],pre[k][j]+num[k][i]);
if(j>=num[k][i])chemx(pre[i][j],pre[k][j-num[k][i]]);
}
for(int i=cnt;i;i--)
for(int j=;j<=num[i][cnt];j++)
for(int k=cnt;k>=i;k--){
chemx(suf[i][j],suf[k][j]+num[i][k]);
if(j>=num[i][k])chemx(suf[i][j],max(suf[k][j]+num[i][k],suf[k][j-num[i][k]]));
}
for(int l=;l<=cnt;l++){
for(int r=l;r<=cnt;r++){
for(int x=,y=num[r][cnt];x<=num[][l];x++){
while(y&&calc(x,y)<=calc(x,y-))y--;
chemx(f[l][r],calc(x,y));
}
}
}
int ans=;
for(int i=;i<=cnt;i++)for(int j=;j<=num[][i];j++)chemx(ans,min(pre[i][j],j));
cout<<ans<<'\n';
for(int i=;i<=n;i++){
int res=;
for(int l=s[i];l;l--)
for(int r=t[i];r<=cnt;r++)
chemx(res,f[l][r]);
cout<<res<<'\n';
}
}
cogs 1377. [NOI2011] NOI嘉年华 (dp的更多相关文章
- luogu P1973 [NOI2011]NOI 嘉年华 dp
LINK:NOI 嘉年华 一道质量非常高的dp题目. 考虑如何求出第一问 容易想到dp. 按照左端点排序/右端点排序状态还是很难描述. 但是我们知道在时间上肯定是一次选一段 所以就可以直接利用时间点来 ...
- 【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)
2436: [Noi2011]Noi嘉年华 Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不 ...
- 2436: [Noi2011]Noi嘉年华 - BZOJ
Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...
- bzoj 2436: [Noi2011]Noi嘉年华
Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...
- BZOJ2436 [Noi2011]Noi嘉年华 【dp】
题目链接 BZOJ2436 题解 看这\(O(n^3)\)的数据范围,可以想到区间\(dp\) 发现同一个会场的活动可以重叠,所以暴力求出\(num[l][r]\)表示离散化后\([l,r]\)的完整 ...
- bzoj2436: [Noi2011]Noi嘉年华
我震惊了,我好菜,我是不是该退役(苦逼) 可以先看看代码里的注释 首先我们先考虑一下第一问好了真做起来也就这个能想想了 那么离散化时间是肯定的,看一手范围猜出是二维DP,那对于两个会场,一个放自变量, ...
- NOI2011 NOI嘉年华
http://www.lydsy.com/JudgeOnline/problem.php?id=2436 首先离散化,离散化后时间范围为[1,cnt]. 求出H[i][j],表示时间范围在[i,j]的 ...
- 洛谷P1973 [NOI2011]Noi嘉年华(动态规划,决策单调性)
洛谷题目传送门 DP题怕是都要大大的脑洞...... 首先,时间那么大没用,直接离散化. 第一问还好.根据题意容易发现,当一堆活动的时间有大量重叠的时候,更好的办法是把它们全部安排到一边去.那么我们转 ...
- 洛谷P1973 [NOI2011]Noi嘉年华(决策单调性)
传送门 鉴于FlashHu大佬讲的这么好(而且我根本不会)我就不再讲一遍了->传送 //minamoto #include<iostream> #include<cstdio& ...
随机推荐
- java之Arrays.asList
使用Arrays.asList()的原因无非是想将数组或一些元素转为集合,而你得到的集合并不一定是你想要的那个集合. 而一开始asList的设计时用于打印数组而设计的,但jdk1.5开始,有了另一个比 ...
- asp.net core 一个中小型项目实战的起手式——项目搭建与仓储模式下的持久层创建(1)
常规的中小型项目搭建方式一般是三层架构加上mvc与webapi作为一个主要框架,再加上一些第三方库,例如orm框架(EF.SqlSugar.Dapper等),API文档工具(Swagger)这些的应用 ...
- 逆向破解之160个CrackMe —— 004-005
CrackMe —— 004 160 CrackMe 是比较适合新手学习逆向破解的CrackMe的一个集合一共160个待逆向破解的程序 CrackMe:它们都是一些公开给别人尝试破解的小程序,制作 c ...
- Markdown转载
@TOC 欢迎使用Markdown编辑器 你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页.如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown ...
- python第二课--分支结构与循环结构
if语句---分支结构 在Python中,要构造分支结构可以使用if.elif和else关键字.所谓关键字就是有特殊含义的单词,像if和else就是专门用于构造分支结构的关键字,很显然你不能够使用它作 ...
- 三步理解--门控循环单元(GRU),TensorFlow实现
1. 什么是GRU 在循环神经⽹络中的梯度计算⽅法中,我们发现,当时间步数较⼤或者时间步较小时,循环神经⽹络的梯度较容易出现衰减或爆炸.虽然裁剪梯度可以应对梯度爆炸,但⽆法解决梯度衰减的问题.通常由于 ...
- npm命令无响应
npm命令完全无反应,不是加载的那种状态 而是下标不停地在哪里闪... 之后找解决方案,说要删除npmrc文件. 强调:不是nodejs安装目录npm模块下的那个npmrc文件 而是在C:\Users ...
- 日志文件写入失败(permission denied)
用过Laravel的小伙伴一开始安装完框架后可能都遇到过daily 日志文件写入失败的问题,接下来我们就来详细说下日志文件写入失败的原因以及对应的解决方案. 在讲这个问题之前可能需要简单介绍下Linu ...
- 云片RocketMQ实战:Stargate的前世今生
RocketMQ消息队列,专业消息中间件,既可为分布式应用系统提供异步解耦和削峰填谷的能力,同时也具备互联网应用所需的海量消息堆积.高吞吐.可靠重试等特性,是应对企业业务峰值时刻必备的技术. 云片由于 ...
- [HAOI2015]树上染色(树上dp)
[HAOI2015]树上染色 这种要算点对之间路径的长度和的题,难以统计每个点的贡献.这个时候一般考虑算每一条边贡献了哪些点对. 知道这个套路以后,那么这题就很好做了. 状态:设\(dp[u][i]\ ...