JOBDU 1109 连通图
题目1109:连通图
时间限制:1 秒
内存限制:32 兆
特殊判题:否
提交:4192
解决:2224
- 题目描述:
-
给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的。
- 输入:
-
每组数据的第一行是两个整数 n 和 m(0<=n<=1000)。n 表示图的顶点数目,m 表示图中边的数目。如果 n 为 0 表示输入结束。随后有 m 行数据,每行有两个值 x 和 y(0<x, y <=n),表示顶点 x 和 y 相连,顶点的编号从 1 开始计算。输入不保证这些边是否重复。
- 输出:
-
对于每组输入数据,如果所有顶点都是连通的,输出"YES",否则输出"NO"。
- 样例输入:
-
4 3
1 2
2 3
3 2
3 2
1 2
2 3
0 0
- 样例输出:
-
NO
YES
- 来源:
- 2011年吉林大学计算机研究生机试真题
- 用DFS判断是否连通,判断图是否连通一般用DFS把,,,个人感觉
-
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<map>
using namespace std;
#define INF 65537
#define maxn 1010
int mapn[maxn][maxn],visited[maxn];
void DFS(int i,int n)
{
visited[i]=;
for(int j=;j<=n;j++)
if(mapn[i][j]==&&visited[j]==)
DFS(j,n);
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
if(n==)
break;
memset(visited,,sizeof(visited));
memset(mapn,,sizeof(mapn));
while(m--)
{
int a,b;
cin >> a >> b;
mapn[a][b]=;
mapn[b][a]=;
}
DFS(,n);
int flag=;
for(int i=;i<=n;i++)
if(visited[i]==)
flag=;
if(flag)
cout << "YES" << endl;
else cout << "NO" << endl;
}
return ;
}
JOBDU 1109 连通图的更多相关文章
- 【九度OJ】题目1109:连通图 解题报告
[九度OJ]题目1109:连通图 解题报告 标签(空格分隔): 九度OJ 原题地址:http://ac.jobdu.com/problem.php?pid=1109 题目描述: 给定一个无向图和其中的 ...
- 九度OJ 1109:连通图 (最小生成树)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2783 解决:1432 题目描述: 给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的. 输入: 每组数据的第一行是两个整数 n ...
- [Jobdu] 题目1545:奇怪的连通图
题目描述: 已知一个无向带权图,求最小整数k.使仅使用权值小于等于k的边,节点1可以与节点n连通. 输入: 输入包含多组测试用例,每组测试用例的开头为一个整数n(1 <= n <= 100 ...
- 九度oj 题目1109:连通图
题目描述: 给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的. 输入: 每组数据的第一行是两个整数 n 和 m(0<=n<=1000).n 表示图的顶点数目,m 表示图中边的 ...
- BZOJ 3237: [Ahoi2013]连通图
3237: [Ahoi2013]连通图 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1161 Solved: 399[Submit][Status ...
- dfs判断连通图(无向)
在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点vi到顶点vj有路径相连(当然从vj到vi也一定有路径),则称vi和vj是连通的.如果 G 是有向图,那么连接vi和vj的路径中所有的边都 ...
- bfs判断连通图(无向)
在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点vi到顶点vj有路径相连(当然从vj到vi也一定有路径),则称vi和vj是连通的.如果 G 是有向图,那么连接vi和vj的路径中所有的边都 ...
- BZOJ 1109: [POI2007]堆积木Klo
1109: [POI2007]堆积木Klo Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 948 Solved: 341[Submit][Statu ...
- POJ2762 Going from u to v or from v to u?(判定单连通图:强连通分量+缩点+拓扑排序)
这道题要判断一张有向图是否是单连通图,即图中是否任意两点u和v都存在u到v或v到u的路径. 方法是,找出图中所有强连通分量,强连通分量上的点肯定也是满足单连通性的,然后对强连通分量进行缩点,缩点后就变 ...
随机推荐
- 【Android Studio】常用快捷键
1. 删除一行:Ctrl + X 更新中……
- 【Android】未引入包问题
Mac 上配置 Android 开发环境,遇到了下面问题: /Users/***/Documents/SVN/Android/***/1.0.3/res/values/styles.xml:21: e ...
- sift、surf、orb 特征提取及最优特征点匹配
目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift si ...
- POI导入excel
前言 在做后台管理的时候经常会用到excel导入的问题,就是将excel中的内容批量导入到数据库中,正好在新项目中我也做了excel导入的功能,来分享给大家,也给自己做个记录. 核心思想 excel导 ...
- TextView 使用详解
极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...
- oracle的自增序列
因为oracle中的自增序列与mysql数据库是不一样的,所以在这里唠嗑一下oracle的自增序列 1. 创建和修改自增序列 --创建序列的语法 -- create sequence [user.]s ...
- hadoop学习(一)----概念和整体架构
程序员就得不停地学习啊,故步自封不能满足公司的业务发展啊!所以我们要有搞事情的精神.都说现在是大数据的时代,可以我们这些码农还在java的业务世界里面转悠呢.好不容易碰到一个可能会用到大数据技术的场景 ...
- F#周报2019年第32期
新闻 推出FSharp.Core 4.7,附带netstandard2支持 ML.NET 1.3.1发布 FSharp.SystemTextJson宣告:对于.NET Core的System.Text ...
- 以kaldi中的yesno为例谈谈transition
在基于GMM-HMM的传统语音识别里,比音素(phone)更小的单位是状态(state).一般每个音素由三个状态组成,特殊的是静音(SIL)由五个状态组成.这里所说的状态就是指HMM里的隐藏的状态,而 ...
- golang 中获取字符串个数
golang 中获取字符串个数 在 golang 中不能直接用 len 函数来统计字符串长度,查看了下源码发现字符串是以 UTF-8 为格式存储的,说明 len 函数是取得包含 byte 的个数 // ...