【UOJ#386】【UNR#3】鸽子固定器(贪心)

题面

UOJ

题解

一个不难想到的暴力做法是把东西按照\(s\)排序,这样子我们枚举极大值和极小值,那么我们选择的一定是这一段之间\(v\)最大的那\(m\)个东西。

考虑优化这个过程,我们枚举右端点,左端点向左移动,每次插入一个元素,用堆来维护选择的过程。这样子复杂度可以做到\(O(n^2logn)\)。

考虑继续优化这个过程,首先如果右端点一旦被弹出堆这个过程就可以终止了,这个很显然。

通过这个过程,我们也可以明白如果选择的个数不超过\(m\)个则必定是一段连续的区间。

接下来一定要选择恰好\(m\)个,如果区间内没有被选满,不难知道没有被选的一定是较小的值。

那么拿一个链表来维护剩下的元素,每次把最小值删掉,这样子每次选择的区间就是连续的了。然后我们在删的时候统计强制包含最小值的最大区间。

于是综上复杂度是\(O(nm)\)。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 200200
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Node{int s,v;}p[MAX];
bool operator<(Node a,Node b){return a.s<b.s;}
bool cmp(int a,int b){return p[a].v<p[b].v;}
int n,m,ds,dv,id[MAX],lt[MAX],nt[MAX];
ll ans,s[MAX];
ll CalcS(ll x){return ds==1?x:x*x;}
ll CalcV(ll x){return dv==1?x:x*x;}
int St[MAX],tot;
int main()
{
n=read();m=read();ds=read();dv=read();
for(int i=1;i<=n;++i)p[i].s=read(),p[i].v=read();
sort(&p[1],&p[n+1]);
for(int i=1;i<=n;++i)s[i]=s[i-1]+p[i].v;
for(int l=1;l<m;++l)
for(int i=1;i+l-1<=n;++i)
ans=max(ans,CalcV(s[i+l-1]-s[i-1])-CalcS(p[i+l-1].s-p[i].s));
for(int i=1;i<n;++i)nt[i]=i+1,lt[i+1]=i;
for(int i=1;i<=n;++i)id[i]=i;
sort(&id[1],&id[n+1],cmp);
for(int i=1;i<=n;++i)
{
int u=id[i];tot=0;
for(int j=1,p=lt[u];j<m&&p;++j,p=lt[p])St[++tot]=p;
reverse(&St[1],&St[tot+1]);St[++tot]=u;
for(int j=1,p=nt[u];j<m&&p;++j,p=nt[p])St[++tot]=p;
for(int j=1;j<=tot;++j)s[j]=s[j-1]+p[St[j]].v;
for(int j=1;j+m-1<=tot;++j)
ans=max(ans,CalcV(s[j+m-1]-s[j-1])-CalcS(p[St[j+m-1]].s-p[St[j]].s));
nt[lt[u]]=nt[u];lt[nt[u]]=lt[u];
}
printf("%lld\n",ans);
return 0;
}

【UOJ#386】【UNR#3】鸽子固定器(贪心)的更多相关文章

  1. UOJ.386.[UNR #3]鸽子固定器(贪心 链表)

    题目链接 \(Description\) 选最多\(m\)个物品,使得它们的\((\sum vi)^{dv}-(s_{max}-s_{min})^{du}\)最大. \(Solution\) 先把物品 ...

  2. UOJ#386. 【UNR #3】鸽子固定器(链表)

    题意 题目链接 为了固定S**p*鸽鸽,whx和zzt来到鸽具商店选购鸽子固定器. 鸽具商店有 nn 个不同大小的固定器,现在可以选择至多 mm 个来固定S**p*鸽鸽.每个固定器有大小 sisi 和 ...

  3. #386. 【UNR #3】鸽子固定器

    #386. [UNR #3]鸽子固定器 题目链接 官方题解 分析: 神奇的做法+链表. 首先按照大小排序. 对于小于选择小于m个物品的时候,这个m个物品一定是一段连续的区间.因为,如果中间空着一个物品 ...

  4. uoj#386. 【UNR #3】鸽子固定器(乱搞)

    传送门 题解 //minamoto #include<bits/stdc++.h> #define R register #define ll long long #define fp(i ...

  5. uoj【UNR #3】To Do Tree 【贪心】

    题目链接 uojUNR3B 题解 如果不输出方案,是有一个经典的三分做法的 但是要输出方案也是可以贪心的 设\(d[i]\)为\(i\)节点到最深的儿子的距离 贪心选择\(d[i]\)大的即可 #in ...

  6. 【UOJ386】【UNR #3】鸽子固定器 链表

    题目描述 有 \(n\) 个物品,每个物品有两个属性:权值 \(v\) 和大小 \(s\). 你要选出 \(m\) 个物品,使得你选出的物品的权值的和的 \(d_v\) 次方减掉大小的极差的 \(d_ ...

  7. uoj386 【UNR #3】鸽子固定器

    link (似乎很久没写题解了) 题意: n个物品,每个物品有a,b两个值,给定A,B,现在最多选其中m个,要求最大化选出的物品中[b权值和的B次方-a极差的A次方]. $n\leq 2\times ...

  8. UOJ.311.[UNR#2]积劳成疾(DP)

    UOJ 序列中的每个位置是等价的.直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和. 由\(j-1\)转移到\(j\) ...

  9. [UOJ386]鸽子固定器

    题解 堆+贪心 题意就是给你\(n\)个物品,让你最多选\(m\)个 每个物品有两个属性\(a_i,b_i\) 最大化\((\sum_{a_i})^{dv}+(max(b_i)-min(b_i))^{ ...

随机推荐

  1. Gallery -- 横向不断滚动 demo

    <%@ Page Language="C#" AutoEventWireup="true" %> <!DOCTYPE html> < ...

  2. go-控制语句

    if else else不能换行 if后最好不加小括号,当然可以加,但建议不加 求平方根 引入math包 调用math.Sqrt(num)函数 switch分支 不用加break来跳出,每一个case ...

  3. JS基础语法---函数---介绍、定义、函数参数、返回值

    函数: 把一坨重复的代码封装,在需要的时候直接调用即可 函数的作用: 代码的重用 函数需要先定义,然后才能使用 函数名字:要遵循驼峰命名法 函数一旦重名,后面的会把前面的函数覆盖 Ctrl +鼠标左键 ...

  4. tornado中传递参数的几种方式

    方法一 :tornado路由可以使用正则表达式中的子表达式传递url参数.比如:(r"/member//(\w*)/([01]*)", MemberHandler)匹配以后,tor ...

  5. Dynamics 365利用HTML页面创建实体记录并同步上传附件

    我是微软Dynamcis 365 & Power Platform方面的工程师罗勇,也是2015年7月到2018年6月连续三年Dynamics CRM/Business Solutions方面 ...

  6. 企业账号发布APP

    做了一个公司内部人使用的项目,公司申请了企业开发者账号.现将企业开发者账号发布app的过成总结如下: 1.生成Certificate Signing Request (CSR)文件 2.2 请求Cer ...

  7. git零基础快速入门实战,重点讲解,在实际生产中整合idea对版本、分支的管理等

    1.什么是版本管理 (多人协作)项目中常见的问题: 代码放在什么地方 ?? 同步(到服务器),代码的冲突问题 ?? 服务器访问权限问题 ?? (代码)服务器内容修改的细节 ?? 项目版本的发布 ?? ...

  8. linux用户管理-用户的基本操作

    目录 linux用户管理-用户的基本操作 用户相关的命令 linux用户管理-用户的基本操作 什么是用户 用户指能够正常登录linux或windows系统 区别 本质都是登录系统的,只不过Linux支 ...

  9. c# 第29节 类

    本节内容: 1:类是什么 2:声明类 3:类的使用 1:类是什么 2:声明类 在生产上的声明:如下操作   或者快捷操作 ctrl+shift+a 键 出现如下界面: 3:类的使用 using Sys ...

  10. [转] 从零推导支持向量机 (SVM)

    原文连接 - https://zhuanlan.zhihu.com/p/31652569 摘要 支持向量机 (SVM) 是一个非常经典且高效的分类模型.但是,支持向量机中涉及许多复杂的数学推导,并需要 ...